Uniform distribution and diophantine inequalities. (English) Zbl 0538.10039

Uniformly distributed sequences with respect to the summation method \(H_{\infty}\) are investigated. Estimates for the discrepancy are established and the results are applied to certain diophantine inequalities. The article contains quantitative refinements of P. Schatte [Math. Nachr. 113, 237-243 (1983; Zbl 0526.10043)].


11K06 General theory of distribution modulo \(1\)
11D75 Diophantine inequalities


Zbl 0526.10043
Full Text: DOI EuDML


[1] Hlawka, E.: Theorie der Gleichverteilung. Mannheim-Wien-Z?rich: B. I. 1979.
[2] Hlawka, E.: Gleichverteilung und das Konvergenzverhalten von Potenzreihen am Rande des Konvergenzkreises. Manuscr. Math.44, 231-263 (1983). · Zbl 0516.10030
[3] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: John Wiley and Sons. 1974. · Zbl 0281.10001
[4] Niederreiter, H., Tichy, R. F.: Beitr?ge zur Diskrepanz bez?glich gewichteter Mittel. Manuscr. Math.42, 85-99 (1983). · Zbl 0498.10030
[5] Schatte, P.: Ein Kriterium f?r dieH ?-Limitierbarkeit. Math. Nachr.64, 63-70 (1974). · Zbl 0302.40010
[6] Schatte, P.: OnH ?-summability and the uniform distribution of sequences. Math. Nachr.113, 237-243 (1983). · Zbl 0526.10043
[7] Tichy, R. F.: Diskrepanz bez?glich gewichteter Mittel und Konvergenzverhalten von Potenzreihen. Manuscr. Math.44, 265-277 (1983). · Zbl 0507.10040
[8] Zeller, K., Beekmann, W.: Theorie der Limitierungsverfahren. Berlin-Heidelberg-New York: Springer. 1970. · Zbl 0199.11301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.