×

Cauchy characterization of enriched categories. (English) Zbl 0538.18005

Summary: A characterization is given of those bicategories which are biequivalent to categories of modules for some suitable base. These bicategories are the correct (not elementary) notion of cosmos, which is shown to be closed under several basic constructions.

MSC:

18D20 Enriched categories (over closed or monoidal categories)
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Artin M., Grothendieck A. &Verdier J. L., Editors,Théorie des topos et cohomologic etale des schémas. Lecture Notes in Math. 269 (Springer, Berlin-N. Y., 1972).
[2] Barr M.,Exact categories. Lecture Notes in Math. 236 (Springer, Berlin-N. Y., 1971) 1–120. · Zbl 0223.18010
[3] Bénabou J. Introduction to bicategories. Lecture Notes in Math. 47 (1967), 1–77. · Zbl 1375.18001
[4] Bénabou J.,2-Dimensional limits and colimits of distributors. Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 30 (1972) 6–7.
[5] Bénabou J.,Les distributeurs. Univ. Catholique de Louvain, Seminaires de Math. Pure, Rapport No. 33 (1973).
[6] Betti R. andCarboni A.,Cauchy completion and the associated sheaf. Cahiers de topologie et géom. diff. 23 (1982), 243–256. · Zbl 0496.18008
[7] Betti R. andCarboni, A.,A notion of topology for bicategories. Cahiers de topologie et géom. diff. (to appear, 1983).
[8] Betti R., Carboni A., Street R. H. & Walters R. F. C.,Variation through enrichment (J. Pure & Appl. Alg. to appear). · Zbl 0571.18004
[9] Carboni A.,Categorie di relazioni. Istituto Lombardo (Rend. Sc.) A 110 (1976) 342–350 · Zbl 0382.18001
[10] Dubuc E.,Adjoint triangles. Lecture Notes in Math. 61 (1968) 66–91. · Zbl 0172.02103
[11] Freyd P.,Abelian categories. (Harper and Row, New York, 1964).
[12] Freyd P.,On canonizing category theory, or, on functorializing model theory. (A pamphlet, University of Pennsylvania, March 1974).
[13] Kelly G. M. andStreet R. H.,Review of the elements of 2-categories. Lecture Notes in Math. 420 (1974), 75–103.
[14] Lawvere F. W.,Closed categories and biclosed bicategories. Lectures at Math. Inst. Aarhus Universitet (Fall, 1971).
[15] Lawvere F. W.,Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano 43 (1973), 135–166. · Zbl 0335.18006
[16] Mac Lane S.,Categories for the Working Mathematician. (Springer-Verlag, New York-Heidelberg-Berlin, 1971). · Zbl 0232.18001
[17] Street R. H. The formal theory of monads. J. Pure & Appl. Algebra 2 (1972), 149–168. · Zbl 0241.18003
[18] Street R. H.,Two universal properties for the category of sets in the 2-category of categories. Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 30 (1972) 51–53.
[19] Street R. H.,Elementary cosmoi. Lecture Notes in Math. 420 (1974), 134–180.
[20] Strett R. H. Fibrations in bicategories. Cahiers de topologie et géom. diff. 21 (1980), 111–160.
[21] Street R. H.,Cosmoi of internal categories. Transactions American Math. Soc. 258 (1980), 271–318. · Zbl 0393.18009
[22] Street R. H.,Conspectus of variable categories. J. Pure & Appl. Algebra 21 (1981), 307–338. · Zbl 0469.18007
[23] Street R. H.,Enriched categories and cohomology. Quaestiones Mathematicae (to appear, 1982). · Zbl 0523.18007
[24] Street R. H.,Characterization of bicategories of stacks. Lecture Notes in Math. (Proceedings of Gummersbach Conference, 1981, to appear). · Zbl 0495.18007
[25] Street R. H. andWalters R. F. C.,Yoneda structures on 2-categories. J. Algebra 50 (1978), 350–379. · Zbl 0401.18004
[26] Succi-Cruclani R.,La teoria delle relazioni nello studio di categorie regolari e di categorie esatte. Riv. Math. Univ. 4 (1975) 143–158. · Zbl 0356.18004
[27] Thiébaud M.,Self-dual structure-semantics and algebraic categories. (Thesis, Dalhousie University, Halifax, August 1971).
[28] Walters R. F. C.,Sheaves on sites as cauchy-complete categories. J. Pure & Appl. Algebra 24 (1982), 95–102. · Zbl 0497.18016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.