Resonances for the AC-Stark effect. (English) Zbl 0538.47010

Summary: The resonance problem for the AC-Stark effect is discussed. We prove that all bound states of the system \(-(1/2)\Delta +V(x)\) will turn into resonances after an AC-electric field is switched on and the order of the imaginary part of a resonance is determined by the number of the photons it takes to ionize the bound state which is turning into the resonance; if two bound states have energy difference of the photon, there exists a state which oscillates between the two states for a long time.


47A40 Scattering theory of linear operators
47F05 General theory of partial differential operators
47A10 Spectrum, resolvent
70K30 Nonlinear resonances for nonlinear problems in mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI


[1] Aguilar, J., Combes, J. M.: A class of analytic perturbations for one body Schrödinger Hamiltonians. Commun. Math. Phys.22, 269-279 (1971) · Zbl 0219.47011 · doi:10.1007/BF01877510
[2] Balslev, E., Combes, J. M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys.22, 280-294 (1971) · Zbl 0219.47005 · doi:10.1007/BF01877511
[3] Eastham, M. S. P.: The spectral theory for periodic differential equations. Edinburgh-London: Scottish Academic Press 1973 · Zbl 0287.34016
[4] Graffi, S., Grecchi, V.: Resonances in Stark effect and perturbation theory. Commun. Math. Phys.62, 83-96 (1978) · doi:10.1007/BF01940333
[5] Graffi, S., Grecchi, V.: Resonances in the Stark effect of atomic systems. Commun. Math. Phys.79, 91-109 (1981) · Zbl 0493.35034 · doi:10.1007/BF01208288
[6] Herbst, I. W.: Dilation analyticity in constant field. I. The two body problem, Commun. Math. Phys.64, 279-298 (1979) · Zbl 0447.47028 · doi:10.1007/BF01221735
[7] Herbst, I. W., Simon, B.: Dilation analyticity in constant electric field. II. The n-body case, Borel summability. Commun. Math. Phys.80, 181-216 (1981) · Zbl 0473.47038 · doi:10.1007/BF01213010
[8] Howland, J. S.: Stationary theory for time dependent Hamiltonians. Math. Ann.207, 315-335 (1974) · Zbl 0268.35071 · doi:10.1007/BF01351346
[9] Howland, J. S.: Scattering theory for Hamiltonians periodic in time. Ind. Univ. Math. J.28, 471-494 (1979) · Zbl 0444.47010 · doi:10.1512/iumj.1979.28.28033
[10] Howland, J. S.: Two problems with time dependent Hamiltonians, in Mathematical methods and applications of scattering theory. DeSanto, J. A. et al. In: Lecture Notes in Physics130, Berlin, Heidelberg, New York: Springer, 1980
[11] Jensen, A.: Resonances in an abstract analytic scattering theory. Ann. Inst. Henri Poincaré33, 209-223 (1980) · Zbl 0462.47010
[12] Kato, T.: Perturbation theory for linear Operators, New York: Springer, 1966 · Zbl 0148.12601
[13] Kato, T.: Linear evolution equations of ?hyperbolic type?. T. Fac. Sci. Univ. Tokyo, Sec. IA.17, 241-258 (1970) · Zbl 0222.47011
[14] Kitada, H., Yajima, K.: A scattering theory for time-dependent long range potentials. Duke Math. J.49, 341-376 (1982) · Zbl 0499.35087 · doi:10.1215/S0012-7094-82-04922-5
[15] Kuroda, S. T.: An introduction to scattering theory. Lecture Notes. Series No.51, Aarhus Univ. (1978) · Zbl 0407.47003
[16] Landau, L. D. Lifschitz, E. M.: Quantum mechanics. Non-relativistic theory. (2nd edn., New York: Pergamon Press 1965 · Zbl 0178.57901
[17] Lanhoff, P. W., Epstein, S. T., Karplus, M.: Aspects of time-dependent perturbation theory. Rev. Mod. Phys.44, 602-644 (1974) · doi:10.1103/RevModPhys.44.602
[18] Scully, M. O., Sargent, III, M.: The concept of the photon: Physics Today25, 38-47 (1972)
[19] Steinberg, S.: Meromorphic families of compact operators. Arch. Rat. Mech. Anal.31, 372-379 (1968/69) · Zbl 0167.43002 · doi:10.1007/BF00251419
[20] Tanabe, H.: Equations of evolution. London, San Francisco, Melbourne: Pitman, 1979 · Zbl 0417.35003
[21] Yajima, K.: Scattring theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Jpn.29, 729-743 (1977) · Zbl 0356.47010 · doi:10.2969/jmsj/02940729
[22] Yajima, K.: Spectral and scattering theory for Schrödinger operators with Stark-effect II. J. Fac. Sci. Univ. Tokyo, Sec. IA.28, 1-15 (1981) · Zbl 0465.35024
[23] Reed, M. Simon, B.: Methods of modern mathematical Physics, IV. Analysis of Operators, New York: Academic Press 1978 · Zbl 0401.47001
[24] Avron, J. E. Herbst, I. W.: Spectral and scattering theory for Schrödinger operators related to the Stark-effect. Comm. Math. Phys.52, 239-254 (1977) · Zbl 0351.47007 · doi:10.1007/BF01609485
[25] Hardy, J. H., Littlewood, J. E., Polya, G.: Inequalities. Cambridge: Cambridge Univ. Press, 1934.
[26] Kato, T.: Smooth operators and commutators. Studia Math.31, 132-140 (1968) · Zbl 0215.48802
[27] Simon, B.: Resonances inN-body quantum systems with dilation analytic potentials and the foundation of time-dependent perturbation theory. Ann. Math.97, 247-274 (1973) · Zbl 0252.47009 · doi:10.2307/1970847
[28] Ginibre, J., Moulin, M.: Hilbert space approach to the quantum mechanical three body problem. Ann. Inst. H. Poincaré21, 97-145 (1974) · Zbl 0311.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.