zbMATH — the first resource for mathematics

A problem of integral geometry for tensor fields and the Saint Venant equation. (English. Russian original) Zbl 0538.53067
Sib. Math. J. 24, 968-977 (1983); translation from Sib. Mat. Zh. 24, No. 6(142), 176-187 (1983).
L’auteur montre qu’un champ fini de tenseurs symétriques de valence m sur \(R^ n\) est déterminé par ses intégrales sur tous les droites, de la m-forme générée par lui, jusqu’à un champ de tenseurs f de la forme \(f=\sigma \nabla x\) où x est un champ fini arbitraire de tenseurs symétriques de valence m-1, \(\nabla\) l’opérateur de différentiation et \(\sigma\) celui de symétrisation. On démontre ensuite, que l’équation \(\sigma \nabla x=f\) a une solution si et seulement si \(Vf=0\), où V est un certain opérateur sur l’espace des champs de tenseurs symétriques.
Reviewer: V.Cruceanu

53C65 Integral geometry
53A45 Differential geometric aspects in vector and tensor analysis
Full Text: DOI
[1] V. A. Sharafutdinov, ?A problem in integral geometry for tensor fields and the St. Venant equations,? Dokl. Akad. Nauk SSSR,261, No. 5, 1066-1069 (1981).
[2] L. A. Santalo, Introduction to Integral Geometry [Russian translation], IL, Moscow (1956).
[3] I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions: Integral Geometry and Representation Theory, Academic Press (1966).
[4] Yu. E. Anikonov and V. G. Romanov, ?Unique determination of a 1-form in terms of its integrals along geodesics,? in: Ill-Posed Mathematical Problems and Topics in Geophysics [in Russian], Novosibirsk (1979), pp 22-27.
[5] M. I. Muskhelishvili, Some Fundamental Problems in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966). · Zbl 0151.36201
[6] P. K. Rashevskii, Riemannian Geometry and Tensor Analysis [in Russian], Nauka, Moscow (1967).
[7] V. I. Smirnov, A Course of Higher Mathematics, Vol. 2, Pergamon (1964). · Zbl 0121.25904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.