zbMATH — the first resource for mathematics

A Grothendieck-Riemann-Roch formula for maps of complex manifolds. (English) Zbl 0539.14005
This is a detailed proof of the formula announced previously by the authors [Bull. Am. Math. Soc., New Ser. 5, 182-184 (1981; Zbl 0495.14010)]. This is a G.R.R. formula relating characteristic classes of a coherent sheaf \({\mathcal F}\) to those of its direct images under a map of complex manifolds f:\(X\to Y\), arbitrary except for the condition that f is proper on the support of \({\mathcal F}\). Except in the case where Y is a point, previous proofs of such formulae required that X and Y be subvarieties of projective spaces. By contrast, this proof uses local geometric formulae for Čech cochains representing the characteristic classes, derives the appropriate local relations between these cochains and leads to a G.R.R. formula relating classes in Hodge cohomology rather than ordinary cohomology.
As in the authors’ previous work on Hirzebruch-Riemann-Roch, the local formulae are based on the notion of a ’twisting cochain’. Innovations here include the introduction of twisting cochains for perfect complexes of sheaves, direct images of twisting cochains and the use of Grauert’s coherence theorem and the relative version of Serre-Grothendieck duality.

14C40 Riemann-Roch theorems
32Q99 Complex manifolds
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
Full Text: DOI EuDML
[1] Baum, P.F., Bott, R.: On the zeroes of meromorphic vector fields. Essays on topology and related topics, memoires dédiés à Georges de Rham, pp. 29-47. Berlin, Heidelberg, New York: Springer 1970
[2] Borel, A., Serre, J.-P.: Le théorème de Riemann-Roch. Bull. Soc. Math. France86, 97-136 (1958) · Zbl 0091.33004
[3] Douady, A.: Le théorème des images directes de Grauert (d’après Kiehl-Verdier). Seminaire Bourbaki, exposé 404, (1971). Lect. Notes Math. Vol. 317, pp. 73-87. Berlin, Heidelberg, New York: Springer 1973
[4] Eilenberg, S., MacLane, S.: On the groupsH(?,n). I. Ann. Math.58, 55-106 (1953) · Zbl 0050.39304
[5] Eilenberg, S., MacLane, S.: On the groupsH(?,n). II. Ann. Math.70, 49-139 (1954). · Zbl 0055.41704
[6] Grothendieck, A.: Formule de Lefschetz, (ed. L. Illusie). S.G.A. 5, Lect. Notes Math.. Vol. 589, pp. 73-137. Berlin, Heidelberg, New York: Springer 1977
[7] Illusie, L.: Genéralités sur les conditions de finitude dans les catégories dérivées, S.G.A. 6, Lect. Notes Math. Vol. 225, pp. 78-159. Berlin, Heidelberg, New York: Springer 1971
[8] MacLane, S.: Homology. Berlin, Heidelberg, New York: Springer 1967
[9] O’Brian, N.R., Toledo, D., Tong, Y.L.L.: The trace map and characteristic classes for coherent sheaves. Am. J. Math.103, 225-252 (1981) · Zbl 0473.14008
[10] O’Brian, N.R., Toledo, D., Tong, Y.L.L.: Hirzebruch-Riemann-Roch for coherent sheaves. Am. J. Math.103, 253-271 (1981) · Zbl 0474.14009
[11] O’Brian, N.R., Toledo, D., Tong, Y.L.L.: Grothendieck-Riemann-Roch for complex manfolds. Bull. Am. Math. Soc.5, 182-184 (1981) · Zbl 0495.14010
[12] Ramis, J.-P., Ruget, G.: Résidues et dualité, Invent. Math.26, 89-131 (1974) · Zbl 0304.32007
[13] Ramis, J.-P., Ruget, G., Verdier, J.-L.: Dualité relative en géométrie analytique complexe. Invent. Math.13, 261-283 (1971) · Zbl 0218.14010
[14] Toledo, D., Tong, Y.L.L.: A parametrix for \(\bar \partial \) and Riemann-Roch in ?ech theory. Topology15, 273-301 (1976) · Zbl 0355.58014
[15] Toledo, D., Tong, Y.L.L.: Duality and intersection theory in complex manifolds I. Math. Ann.237, 41-77 (1978) · Zbl 0391.32008
[16] Treves, F.: Topological vector spaces, distributions and kernels. London, New York: Academic Press 1967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.