Sergeev, A. N. The centre of enveloping algebra for Lie superalgebra Q(n,\({\mathbb{C}})\). (English) Zbl 0539.17003 Lett. Math. Phys. 7, 177-179 (1983). The author considers the Lie superalgebra \({\mathfrak g}=Q(n,{\mathbb{C}})\subset {\mathfrak gl}(n,n)\) consisting of all block matrices \(\left( \begin{matrix} A\quad B\\ B\quad A\end{matrix} \right)\) with arbitrary complex \(n\times n\)- matrices A and B. He explicitly describes (without proof) the algebra of all \({\mathfrak g}\)-invariant elements of the supersymmetric algebra \(S({\mathfrak g})\) and the center of the universal enveloping algebra \(U({\mathfrak g})\). Reviewer: M.Scheunert Cited in 28 Documents MSC: 17A70 Superalgebras Keywords:Harish-Chandra homomorphism; Lie superalgebra; \({\mathfrak g}\)-invariant elements; supersymmetric algebra; center; universal enveloping algebra PDF BibTeX XML Cite \textit{A. N. Sergeev}, Lett. Math. Phys. 7, 177--179 (1983; Zbl 0539.17003) Full Text: DOI References: [1] LeitesD.A., Uspehi Mat. Nauk. 35, 3-57 (1980). [2] KacV.G., Adv. Math. 26, 8-92 (1977). · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2 [3] Sergeev A.N., C.R. Bulg. Acad. Sci. 35 (1982). [4] BourbakiN., Algebra commutative, Herman, Paris, 1961. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.