×

Supercuspidal representations of \(SL_ n\) over a p-adic field: The tame case. (English) Zbl 0539.22014

The authors study the restriction of an irreducible supercuspidal representation of \(GL_ n(F)\) (F a p-adic field) to \(SL_ n(F)\) when n is prime to p, the residual characteristic of F. They are able to identify the irreducible components of the restricted representation if n and q-1 are also prime, where q is the order of the residue class field of F. When combined with earlier work of the reviewer and the first named author this yields a classification of the supercuspidal representations of \(SL_ n(F)\) in this case. In general they reduce the problem of determining the irreducible components to the analogous problem over the residue class field.
Reviewer: R.Howe

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI

References:

[1] I. N. Bernstein and A. V. Zelevinsky, Representations of the groups \(\mathrm{GL}_n(F)\) where \(F\) is a non-archimedean local field , Russian Math. Surveys 31 (1976), 1-68. · Zbl 0348.43007 · doi:10.1070/RM1976v031n03ABEH001532
[2] H. Carayol, Représentations cuspidales du groupe linéaire , · Zbl 0549.22009
[3] W. Feit, Characters of finite groups , W. A. Benjamin, Inc., New York-Amsterdam, 1967. · Zbl 0166.29002
[4] J. A. Green, The characters of the finite general linear groups , Trans. Amer. Math. Soc. 80 (1955), 402-447. JSTOR: · Zbl 0068.25605 · doi:10.2307/1992997
[5] I. M. Gel’fand and M. I. Graev, Representations of a group of matrices of the second order with elements from a locally compact field, and special functions on locally compact fields , Russian Math. Surveys (1963), no. 18, 29-100. · Zbl 0166.40201
[6] S. S. Gelbart and A. W. Knapp, \(L\)-indistinguishability and \(R\) groups for the special linear group , Adv. in Math. 43 (1982), no. 2, 101-121. · Zbl 0493.22005 · doi:10.1016/0001-8708(82)90030-5
[7] R. Howe, Tamely ramified supercuspidal representations of \({\mathrm Gl}_{n}\) , Pacific J. Math. 73 (1977), no. 2, 437-460. · Zbl 0404.22019 · doi:10.2140/pjm.1977.73.437
[8] R. Howe, Classification of irreducible representations of \(\mathrm{GL}_2(F)\) , preprint, IHES, 1978.
[9] H. Jacquet and R. P. Langlands, Automorphic forms on \({\mathrm GL}(2)\) , Springer-Verlag, Berlin, 1970. · Zbl 0236.12010 · doi:10.1007/BFb0058988
[10] P. C. Kutzko, On the supercuspidal representations of \({\mathrm Gl}_{2}\) , Amer. J. Math. 100 (1978), no. 1, 43-60. JSTOR: · Zbl 0417.22012 · doi:10.2307/2373875
[11] P. C. Kutzko, On the supercuspidal representations of \({\mathrm Gl}_{2}\). II , Amer. J. Math. 100 (1978), no. 4, 705-716. JSTOR: · Zbl 0421.22012 · doi:10.2307/2373906
[12] P. C. Kutzko and P. J. Sally, Jr., All supercuspidal representations of \(\mathrm{SL}_{l}\) over a \(p\)-adic field are induced , to appear in the Proceedings of the Utah Conference on Representation Theory. · Zbl 0538.22011
[13] P. Kutzko and P. J. Sally, Jr., Supercuspidal representations of \(\mathrm{SL}_2\) ,
[14] G. I. Lehrer, The discrete series of the linear groups \({\mathrm SL}(n,\,q)\) , Math. Z. 127 (1972), 138-144. · Zbl 0226.20035 · doi:10.1007/BF01112605
[15] J.-P. Labesse and R. P. Langlands, \(L\)-indistinguishability for \({\mathrm SL}(2)\) , Canad. J. Math. 31 (1979), no. 4, 726-785. · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[16] A. Moy, Local Constants and the Tame Langlands Correspondence , Thesis, University of Chicago, 1982. · Zbl 0597.12019 · doi:10.2307/2374518
[17] P. J. Sally, Jr., Lectures on representations of \(p\)-adic groups , University of Chicago, 1983.
[18] J.-P. Serre, Corps locaux , Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962. · Zbl 0137.02601
[19] F. Shahidi, Some results on \(L\)-indistinguishability for \(\mathrm{SL}(r)\) , · Zbl 0553.10024 · doi:10.4153/CJM-1983-060-9
[20] A. J. Silberger, \({\mathrm PGL}_{2}\) over the \(p\)-adics: its representations, spherical functions, and Fourier analysis , Lecture Notes in Mathematics, Vol. 166, Springer-Verlag, Berlin, 1970. · Zbl 0204.44102
[21] J. A. Shalika, Representations of the two by two unimodular group over local fields , Seminar on representations of Lie groups, IAS, 1966.
[22] A. V. Zelevinsky, Induced representations of reductive \({\mathfrak p}\)-adic groups. II. On irreducible representations of \({\mathrm GL}(n)\) , Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165-210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.