×

Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. (English) Zbl 0539.62064

Summary: From the results of convergence by sampling in linear principal component analysis (of a random function in a separable Hilbert space), the limiting distribution is given for the principal values and the principal factors. These results can be explicitly written in the normal case. Some applications to statistical inference are investigated.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
62E20 Asymptotic distribution theory in statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, T. W., (An Introduction to Multivariate Statistical Analysis (1958), Wiley: Wiley New York) · Zbl 0083.14601
[2] Anderson, T. W., Asymptotic theory for principal component analysis, Ann. Math. Statist., 34 (1963) · Zbl 0202.49504
[3] Besse, P., Étude descriptive d’un processus—Approximation et interpolation, (Thèse de Doctorat de Spécialité (1979), Université de Toulouse)
[4] Billingsley, P., (Convergence of Probability Measures (1968), Wiley: Wiley New York) · Zbl 0172.21201
[5] Boumaza, R., Contribution à l’étude descriptive d’une fonction aléatoire qualitative, (Thèse de Doctorat de Spécialité (1980), Université de Toulouse)
[6] Caillez, F.; Pages, J. P., Introduction à l’analyse des données (1976), SMASH: SMASH Paris
[7] Dauxois, J.; Pousse, A., Les analyses factorielles en calcul des probabilités et en statistique: Essai d’étude synthétique, (Thèse (1976), Université de Toulouse)
[8] Dauxois, J.; Fontan, J.; Pousse, A., Échantillonnage en segmentation, étude the la convergence, (Statistique et analyse des données (1979))
[9] Davis, A., Asymptotic theory for principal component analysis; non normal case, Austral. J. Statist, 19 (1977) · Zbl 0417.62046
[10] Deville, J. C., Méthodes statistiques et numériques de l’analyse harmonique, Ann. INSEE, 15 (1974)
[11] Dunford, N.; Schwarz, J., (Linear Operators (1963), Interscience: Interscience New York) · Zbl 0128.34803
[12] Gohberg, I. C.; Krein, M. G., Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace Hilbertien (1971), Dunod: Dunod Paris
[13] Hsu, P. L., On the limiting distribution of roots of a determinantal equation, J. London Math. Soc., 16, 183-194 (1941) · Zbl 0063.02911
[14] Kleffe, J., Principal component of random variables with values in a separable Hilbert space, Math. Operationsforch. Statist., 4, 391-406 (1973), Heft 4 · Zbl 0275.62051
[15] Krishnaiah, P. R.; Lee, J. C., On the asymptotic joint distribution of certain functions of eigenvalues of some random matrices, J. Multivar. Anal., 9, 248-258 (1979) · Zbl 0408.62043
[16] Riesz, F.; Nagy, B., Leçons d’analyse fonctionnelle (1965), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0122.11205
[17] Romain, Y., Étude asymptotique des approximations par échantillonnage de l’analyse en composantes principales d’une fonction aléatoire. Quelques applications, (Thèse de Doctorat de Spécialité (1979), Université de Toulouse)
[18] Fang, C.; Krishnaiah, P. R., Asymptotic distributions of functions of the eigenvalues of some random matrices for non normal populations, J. Multivar. Anal., 12 (1982) · Zbl 0497.62025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.