Forti, Marco; Honsell, Furio Set theory with free construction principles. (English) Zbl 0541.03032 Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 10, 493-522 (1983). In set theory with the axiom of foundation, the \(\in\)-relations on transitive classes are up to isomorphism just the extensional well-founded relations. In the absence of the axiom of foundation one may require various axioms of universality (e.g. that every binary relation (which is extensional) has an homomorphism (an isomorphism, resp.) onto the \(\in\)-relation on a transitive set or class). The authors discuss several such axioms as realizations of a ”free construction principle” and establish their mutual relationship within the framework of Gödel-Bernays set theory. Reviewer: K.Gloede Cited in 3 ReviewsCited in 28 Documents MSC: 03E65 Other set-theoretic hypotheses and axioms 03E35 Consistency and independence results Keywords:axiom of foundation; axioms of universality; free construction principle; Gödel-Bernays set theory PDFBibTeX XMLCite \textit{M. Forti} and \textit{F. Honsell}, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 10, 493--522 (1983; Zbl 0541.03032) Full Text: Numdam EuDML References: [1] M. Boffa , Sur la théorie des ensembles sans axiome de fondement , Bull. Soc. Math. Belg. , 21 ( 1969 ), pp. 16 - 56 . MR 260588 | Zbl 0193.30601 · Zbl 0193.30601 [2] M. Boffa , Forcing et négation de l’axiome de fondement , Mem. Acad. Sc. Belg. , Tome XL , fasc. 7 ( 1972 ). Zbl 0286.02068 · Zbl 0286.02068 [3] U. Felgner , Choice functions on sets and classes, in Sets and classes; on the work by Paul Bernays (G. H. Müller, ed.), New York - Amsterdam , 1976 , pp. 217 - 255 . MR 424566 | Zbl 0341.02054 · Zbl 0341.02054 [4] M. Forti - F. Honsell , Comparison of the axioms of global and local universality , Zeitschr. für Math. Log. u. Grund. der Math. ( 1982 , to appear). Zbl 0523.03040 · Zbl 0523.03040 · doi:10.1002/malq.19840301302 [5] M. Forti - F. Honsell , Formalizzazioni del principio di libera costruzione , in Atti degli incontri di logica matematica (C. Bernardi, cur.), Siena 1982 , pp. 209 - 213 . Zbl 0514.03033 · Zbl 0514.03033 [6] K. Gödel , The consistency of the axiom of choice and of the generalized continumu hypothesis , Ann. of Math. Stud. , vol. 3 , Princeton , 1940 . Zbl 0061.00902 · Zbl 0061.00902 [7] P. Hájek , Modelle der Mengenlehre in denen Mengen gegebener Gestalt existieren , Zeitschr. f. Math. Log. u. Grund. der Math. , 11 ( 1965 ), pp. 103 - 115 . MR 177897 | Zbl 0171.26402 · Zbl 0171.26402 · doi:10.1002/malq.19650110205 [8] F. Honsell , Modelli della teoria degli insiemi, principi di regolarità e di libera costruzione , Pisa , tesi di laurea ( 1981 ). [9] A. Levy , A hierarchy of formulas in set theory , Mem. Amer. Math. Soc. , 57 ( 1965 ). MR 189983 | Zbl 0202.30502 · Zbl 0202.30502 [10] L. Rieger , A contribution to Gödel’s axiomatic set thery, I , Czech. Math. J. , 7 ( 1957 ), pp. 323 - 357 . Article | MR 99298 | Zbl 0089.24403 · Zbl 0089.24403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.