Shekhtman, V. V. Chern classes in algebraic K-theory. (English) Zbl 0541.18008 Trans. Mosc. Math. Soc. 1984, No. 1, 243-271 (1984). Translation from Tr. Mosk. Mat. O.-va 45, 237-264 (Russian) (1982; Zbl 0515.18008). Cited in 2 Documents MSC: 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) 14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry 57R20 Characteristic classes and numbers in differential topology 11R37 Class field theory 14F20 Étale and other Grothendieck topologies and (co)homologies 14F40 de Rham cohomology and algebraic geometry 11S70 \(K\)-theory of local fields 14L30 Group actions on varieties or schemes (quotients) 11R70 \(K\)-theory of global fields Keywords:Chern classes; de Rham cohomology; Grothendieck K-functor; singular cohomology; étale cohomology; Galois symbol of Tate; n-dimensional class field theory; Hodge cohomology; crystalline cohomology PDF BibTeX XML Cite \textit{V. V. Shekhtman}, Trans. Mosc. Math. Soc. 1984, No. 1, 243--271 (1984; Zbl 0541.18008)