×

zbMATH — the first resource for mathematics

The energy determined in general relativity on the basis of the traditional Hamiltonian approach does not have physical meaning. (English. Russian original) Zbl 0541.53024
Theor. Math. Phys. 56, 832-841 (1983); translation from Teor. Mat. Fiz. 1983, No. 2, 301-314 (1983).
The paper contains the critical analysis of Faddeev’s paper reviewed above. The energy of a system as obtained in general relativity from the traditional Hamiltonian approach is shown to be dependent on the choice of space-coordinate system. As a result it may take any arbitrary value. It means that such an approach leads to physically meaningless results. The authors declare that in the theory of Einstein a solution of the energy problem is not possible.
Reviewer: A.Guč

MSC:
53B50 Applications of local differential geometry to the sciences
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Brill, S. Deser, and L. D. Faddeev, Phys. Lett. A,26, 583 (1968). · doi:10.1016/0375-9601(68)90533-1
[2] I. Choquet-Bruhat and J. E. Marsden, Commun. Math. Phys.,51, 283 (1976). · Zbl 0364.58013 · doi:10.1007/BF01617923
[3] R. Schoen and S. T. Yau, Commun. Math. Phys.,65, 45 (1979). · Zbl 0405.53045 · doi:10.1007/BF01940959
[4] E. Witten, Commun. Math. Phys.,80, 381 (1981). · Zbl 1051.83532 · doi:10.1007/BF01208277
[5] L. D. Faddeev, Usp. Fiz. Nauk.136, 435 (1982). · doi:10.3367/UFNr.0136.198203c.0435
[6] L. D. Faddeev, ?The energy problem in Einstein’s theory of gravitation.? Preprint R-8-81 [in Russian], Leningrad Branch. V. A. Steklov Mathematics Institute (1981). pp. 3-48.
[7] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979), p. 353.
[8] V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz.,51, 163 (1982).
[9] A. A. Vlasov and V. I. Denisov, ?Einstein’s expression for gravitational radiation is not a consequence of general relativity.? Preprint OTF 81-141 [in Russian], Department of Theoretical Physics, Institute of High Energy Physics, Serpukhov (1981), pp. 3-21.
[10] V. O. Solov’ev, ?Noether’s theorems in the canonical formalism of the general theory of relativity,? Preprint OTF 82-18 [in Russian], Department of Theoretical Physics, Institute of High Energy Physics, Serpukhov (1982), pp. 3-12.
[11] A. A. Logunov and V. N. Folomeshkin, Teor. Mat. Fiz.,32, 147 (1977).
[12] A. A. Logunov and V. N. Folomeshkin, Teor. Mat. Fiz.,32, 167 (1977).
[13] A. A. Logunov and V. N. Folomeshkin, Teor. Mat. Fiz.,32, 291 (1977).
[14] A. A. Logunov and V. N. Folomeshkin, Teor. Mat. Fiz.,33, 174 (1977).
[15] V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz.,43, 187 (1980).
[16] V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz.,45, 291 (1980).
[17] V. I. Denisov and A. A. Logunov, Teor. Mat. Fiz.,50, 3 (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.