×

zbMATH — the first resource for mathematics

Low-energy parameters in nonrelativistic scattering theory. (English) Zbl 0542.35056
The authors consider the low-energy behaviour of Schrödinger operators with short-range or Coulomb-type plus short-range potentials. Based on expansions of the short-range scattering amplitude with respect to low energy E in a Laurent series around \(E=0\) explicit expressions for low- energy parameter like scattering length and effective range parameter are obtained. To this end these concepts are generalized to the case of non- spherically symmetric potentials. Zero-energy resonances and zero-energy bound states are taken into account. In the last chapter the definitions are extended to the Coulomb case with short-range perturbation. Finally an explicit expression for the Coulomb-modified scattering length is given.
Reviewer: R.Picard

MSC:
35P25 Scattering theory for PDEs
35Q99 Partial differential equations of mathematical physics and other areas of application
81U05 \(2\)-body potential quantum scattering theory
35J10 Schrödinger operator, Schrödinger equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jensen, A.; Kato, T., Duke math. J., 46, 583, (1979)
[2] Jensen, A., Duke math. J., 47, 57, (1980)
[3] “Spectral Properties of Schrödinger Operators and Time-Decay of the Wave Functions. Results in L2(\(R\)4),” preprint, University of Kentucky.
[4] Rauch, J., J. funct. anal., 35, 304, (1980)
[5] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R., Ann. inst. Henri Poincaré. sec. A, 37, 1, (1982)
[6] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R., Acta phys. austriaca suppl., 23, 577, (1981)
[7] \scD. Bollé and S. F. J. Wilk, “Low-Energy Sum Rules for Two-Particle Scattering,” J. Math. Phys., in press.
[8] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Streit, L., Ann. inst. Henri Poincaré, Seo., A38, 303, (1983)
[9] Klaus, M.; Simon, B., Ann. phys., 130, 251, (1980)
[10] Simon, B., J. funct. anal., 40, 66, (1981)
[11] Newton, R.G.; Taylor, J.R.; Joachain, C.J., (), Amsterdam
[12] Yapaev, D.R., Comm. math. phys., 85, 177, (1982)
[13] Simon, B., ()
[14] Grossman, A.; Wu, T.T.; Grossman, A.; Wu, T.T., J. math. phys., J. math. phys., 3, 684, (1962)
[15] Reed, M.; Simon, B., (), Scattering Theory · Zbl 0517.47006
[16] Albeverio, S.; Høegh-Krohn, R., J. on. theory, 6, 313, (1981)
[17] Newton, R.G., J. math. phys., 18, 1348, (1977)
[18] Simon, B., J. funct. anal., 35, 215, (1980)
[19] Simon, B., Bull. am. math. soc., 7, 447, (1982)
[20] Martin, A., Nuovo cim., 31, 1229, (1964)
[21] Reed, M.; Simon, B., (), Analysis of Operators · Zbl 0517.47006
[22] Simon, B., J. funct. anal., 25, 338, (1977)
[23] \scH. Holden, R. Høegh-Krohn, and S. Johannesen, “The Short Range Expansion,” Advan, Appl. Math., in press. · Zbl 0546.35019
[24] Høegh-Krohn, R.; Mebkhout, M., (), preprint
[25] Albeverio, S.; Ferreira, L.S.; Gesztesy, F.; Høegh-Krohn, R.; Streit, L., (), preprint
[26] Hinckelmann, O.; Spruch, L., Phys. rev. A, 3, 642, (1971)
[27] Chang, E.S., J. phys. B, 14, 893, (1981)
[28] Van Haeringen, H.; Kok, L.P., Phys. rev. A, 26, 1218, (1982)
[29] Kuroda, S.T., J. anal. math., 20, 57, (1967)
[30] Guillot, J.C., Ind. univ. math. J., 25, 1105, (1976)
[31] Hostler, L., J. math. phys., 8, 642, (1967)
[32] Gesztesy, F., J. math. phys., 23, 74, (1982)
[33] Abramowitz, M.; Stegun, I.A., ()
[34] Cornille, H.; Mabtin, A., Nuovo cim., 26, 268, (1962)
[35] Almström, H., Nuovo cim. A, 55, 125, (1968)
[36] Hamilton, J.; Øverbö, I.; Tromborg, B., Nucl. phys. B, 60, 443, (1973)
[37] Van Haeringen, H., J. math. phys., 18, 927, (1977)
[38] Klarsfeld, S., Nuovo cim. A, 43, 1077, (1966)
[39] Semon, M.D.; Taylor, J.R., Nuovo cim. A, 26, 48, (1975)
[40] \scL. P. Kok and H. Van Haeringen, “Two-Range Potentials and Effective-Range Theory,” preprint, University of Groningen. · Zbl 0521.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.