×

zbMATH — the first resource for mathematics

Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. (English) Zbl 0542.35062
This is a substantial piece of work on a very difficult problem: the boundary-initial value problem for compressible flow with zero boundary conditions. The paper essentially begins with a proof of local existence under weak hypotheses than those of previous writers and follows with a uniqueness theorem and global a-priori estimates. The next section is very interesting and uses energy stability arguments in conjunction with comparisons to the solution to the stationary Stokes problem to derive sufficient conditions to ensure asymptotic stability. Finally, an existence result is established for periodic solutions and this is extended for a time-independent body force to obtain a stationary solution as the period tends to zero.
Reviewer: B.Straughan

MSC:
35Q30 Navier-Stokes equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B10 Periodic solutions to PDEs
35B45 A priori estimates in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] S. Agmon - A. Douglis - L. Nirenberg , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II , Comm. Pure Appl. Math. , 17 ( 1964 ), pp. 35 - 92 . MR 162050 | Zbl 0123.28706 · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] H. Beirão Da Veiga , Diffusion on viscous fluids. Existence and asymptotic properties of solutions , Ann. Scuola Norm. Sup. Pisa , ( IV ), 10 ( 1983 ), pp. 341 - 355 . Numdam | MR 728440 | Zbl 0531.76095 · Zbl 0531.76095 · numdam:ASNSP_1983_4_10_2_341_0 · eudml:83910
[3] J.P. Bourguignon - H. Brezis , Remarks on the Euler equation , J. Funct. Anal. , 15 ( 1974 ), pp. 341 - 363 . MR 344713 | Zbl 0279.58005 · Zbl 0279.58005 · doi:10.1016/0022-1236(74)90027-5
[4] L. Cattabriga , Su un problema al contorno relativo al sistema di equazioni di Stokes , Rend. Sem. Mat. Univ. Padova , 31 ( 1961 ), pp. 308 - 340 . Numdam | MR 138894 | Zbl 0116.18002 · Zbl 0116.18002 · numdam:RSMUP_1961__31__308_0 · eudml:107065
[5] M. Giaquinta - G. Modica , Nonlinear systems of the type of the stationary Navier-Stokes system , J. Reine Angew. Math. , 330 ( 1982 ), pp. 173 - 214 . MR 641818 | Zbl 0492.35018 · Zbl 0492.35018 · crelle:GDZPPN002199203 · eudml:152411
[6] D. Graffi , Il teorema di unicità nella dinamica dei fluidi compressibili , J. Rational Mech. Anal. , 2 ( 1953 ), pp. 99 - 106 . MR 52270 | Zbl 0050.19604 · Zbl 0050.19604
[7] J.G. Heywood - R. Rannacher , Finite element approximation of the non-stationary Navier-Stokes problem. - I : Regularity of solutions and second-order error estimates for spatial discretization , SIAM J. Numer. Anal. , 19 ( 1982 ), pp. 275 - 311 . MR 650052 | Zbl 0487.76035 · Zbl 0487.76035 · doi:10.1137/0719018
[8] J.G. Heywood - R. Rannacher , Finite element approximation of the non-stationary Navier-Stokes problem. - II: Stable solutions and error estimates uniform in time , Preprint University of Erlangen-Nürnberg , 1981 .
[9] N. Itaya , On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids , Kodai Math. Sem. Rep. , 23 ( 1971 ), pp. 60 - 120 . Article | MR 283426 | Zbl 0219.76080 · Zbl 0219.76080 · doi:10.2996/kmj/1138846265 · minidml.mathdoc.fr
[10] A. Matsumura - T. Nishida , The initial value problem for the equations of motion of viscous and heat-conductive gases , J. Math. Kyoto Univ. , 20 ( 1980 ), pp. 67 - 104 . Article | MR 564670 | Zbl 0429.76040 · Zbl 0429.76040 · minidml.mathdoc.fr
[11] A. Matsumura - T. Nishida , The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid , Preprint University of Wisconsin , MRC Technical Summary Report no. 2237 ( 1981 ). MR 713680
[12] A. Matsumura - T. Nishida , Initial boundary value problems for the equations of motion of general fluids , in Computing methods in applied sciences and engineering , V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company , Amsterdam - New York - Oxford , 1982 . MR 784652 | Zbl 0505.76083 · Zbl 0505.76083
[13] J. Nash , Le problème de Cauchy pour les équations différentielles d’un fluide général , Bull. Soc. Math. France , 90 ( 1962 ), pp. 487 - 497 . Numdam | MR 149094 | Zbl 0113.19405 · Zbl 0113.19405 · numdam:BSMF_1962__90__487_0 · eudml:87027
[14] M. Padula , Existence and uniqueness for viscous steady compressible motions , to appear. MR 860302 | Zbl 0644.76086 · Zbl 0644.76086 · doi:10.1007/BF00251910
[15] R. Rannacher , Stable finite element solutions to nonlinear parabolic problems of Navier-Stokes type , in Computing methods in applied sciences and engineering , V, ed. R. Glowinski and J. L. Lions, North-Holland Publishing Company , Amsterdam - New York - Oxford , 1982 . MR 784647 | Zbl 0505.76049 · Zbl 0505.76049
[16] J. Serrin , Mathematical principles of classical fluid mechanics , in Handbuch der Physik , Bd. VIII / 1 , Springer-Verlag , Berlin - Göttingen - Heidelberg , 1959 . MR 108116 · Zbl 0086.20001
[17] J. Serrin , On the stability of viscous fluid motions , Arch. Rational Mech. Anal. 3 ( 1959 ), pp. 1 - 13 . MR 105250 | Zbl 0086.20001 · Zbl 0086.20001 · doi:10.1007/BF00284160
[18] J. Serrin , A note on the existence of periodic solutions of the Navier-Stokes equations , Arch. Rational Mech. Anal. , 3 ( 1959 ), pp. 120 - 122 . MR 105251 | Zbl 0089.19102 · Zbl 0089.19102 · doi:10.1007/BF00284169
[19] J. Serrin , On the uniqueness of compressible fluid motions , Arch. Rational Mech. Anal. , 3 ( 1959 ), pp. 271 - 288 . MR 106646 | Zbl 0089.19103 · Zbl 0089.19103 · doi:10.1007/BF00284180
[20] V.A. Solonnikov , Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid , J. Soviet Math. , 14 ( 1980 ), pp. 1120 - 1133 (previously in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. ( LOMI ), 56 ( 1976 ), pp. 128 - 142 [russian]). MR 481666 | Zbl 0451.35092 · Zbl 0451.35092 · doi:10.1007/BF01562053
[21] M. Spivak , A comprehensive introduction to differential geometry , vol. 4 , Publish or Perish, Inc. , Boston , 1975 . Zbl 0306.53002 · Zbl 0306.53002
[22] A. Tani , On the first initial-boundary value problem of compressible viscous fluid motion , Publ. Res. Inst. Math. Sci. Kyoto Univ. , 13 ( 1977 ), pp. 193 - 253 . Article | Zbl 0366.35070 · Zbl 0366.35070 · doi:10.2977/prims/1195190106 · minidml.mathdoc.fr
[23] R. Temam , Navier-Stokes equations. Theory and numerical analysis , North. Holland Publishing Company , Amsterdam - New York - Oxford , 1977 . MR 609732 | Zbl 0383.35057 · Zbl 0383.35057
[24] A. Valli , Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds , Boll. Un. Mat. It., Anal. Funz. Appl. , 18-C ( 1981 ), pp. 317 - 325 . MR 631585 | Zbl 0484.76075 · Zbl 0484.76075
[25] A. Valli , An existence theorem for compressible viscous fluids , Ann. Mat. Pura Appl. , 130 ( 1982 ), pp. 197 - 213 ; 132 ( 1982 ), pp. 399 - 400 . MR 663971 | Zbl 0599.76081 · Zbl 0599.76081 · doi:10.1007/BF01761495
[26] A.I. Vol’pert - S.I. Hudjaev , On the Cauchy problem for composite systems of nonlinear differential equations , Math. USSR-Sb. , 16 ( 1972 ), pp. 517 - 544 (previously in Mat. Sb. , 87 ( 1972 ), pp. 504 - 528 [russian]). MR 390528 | Zbl 0251.35064 · Zbl 0251.35064 · doi:10.1070/SM1972v016n04ABEH001438
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.