×

zbMATH — the first resource for mathematics

Statistical linear spaces. I: Properties of \(\epsilon\),\(\eta\)-topology. (English) Zbl 0542.46006
The definition of the statistical linear space in the Menger sense (SLM- space) (S,\({\mathcal J},T)\) is given in this paper. The \(\epsilon\),\(\eta\)- topology is introduced and fundamental properties of SLM-spaces as linear topological spaces are investigated.
Using the notion of F-convergent sequence it is possible to introduce a topology into S, named th \(\epsilon\),\(\eta\)-topology. Under continuity of the t-norm (S,\({\mathcal J},T)\) is a Hausdorff linear topological space with a countable base of neighbourhoods of the null element in S. If (S,\({\mathcal J},T)\) is finite-dimensional then the \(\epsilon\),\(\eta\)-topology is normable and equivalent to Euclidean topology. Some properties of the \(\epsilon\),\(\eta\)-topology can be investigated by a mapping \({\mathcal J}:S\to({\mathcal F},L),\) where L isLévy’s metric in \({\mathcal F}\). This mapping \({\mathcal J}\) is uniformly continuous and a subset \(K\subset(S,{\mathcal J},T)\) is \(\epsilon\),\(\eta\)-bounded if and only if \({\mathcal J}(K)\) is compact in (\({\mathcal F},L)\). As a space \((S,{\mathcal J},\min)\) with the strongest t-norm \(\min (\cdot,\cdot)\) is locally convex and hence the \(\epsilon\),\(\eta\)-topology is normable if and only if there exists an \(\epsilon\),\(\eta\)-neighbourhood \(O(\epsilon\),\(\eta)\) with compact image in (\({\mathcal F},L)\).

MSC:
46A99 Topological linear spaces and related structures
54A40 Fuzzy topology
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] B. Schweizer, A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960 I), 313-335. · Zbl 0096.33203 · doi:10.2140/pjm.1960.10.673
[2] B. Schweizer A. Sklar, E. Thorp: The metrization of statistical metric spaces. Pacific J. Math. 10 (1960 I), 673-677. · Zbl 0096.33203 · doi:10.2140/pjm.1960.10.673
[3] B. Schweizer: On the uniform continuity of the probabilistic distance. Z. Warsch. verw. Gebiete 5 (1966), 357-360. · Zbl 0139.36001 · doi:10.1007/BF00535365
[4] H. Sherwood: On the completion of probabilistic metric spaces. Z. Wahrsch. verw. Gebiete 6 (1966), 62-64. · Zbl 0231.60004 · doi:10.1007/BF00531809
[5] N. Nishura: Constructive method in probabilistic metric spaces. Fundamenta Mathematicae, Nr. 67 (1970), 115-124.
[6] K. Menger: Statistical metric. Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. · Zbl 0063.03886 · doi:10.1073/pnas.28.12.535
[7] P. S. Marcus: Probabilistic metric spaces constructed from stationary Markov chains. Aequationes Math. 75(1977), 1-3, 169-171. · Zbl 0365.60053 · doi:10.1007/BF01835647 · eudml:136648
[8] R. Moynihan: Probabilistic metric spaces induced by Markov chains. Z. Wahrsch. verw. Gebiete 35 (1976), 2, 177-187. · Zbl 0314.60047 · doi:10.1007/BF00533323
[9] H. Sherwood: A note on PM-spaces determined by measure preserving transformation. Z. Wahrsch. verw. Gebiete 33 (1975/76), 4, 353-354. · Zbl 0307.60009 · doi:10.1007/BF00534785
[10] S. Sklar: Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 6, 449-460. · Zbl 0292.60036 · eudml:28992
[11] J. L. Kelley, I. Namioka: Linear Topological Spaces. Van Nostrand, New York 1963. · Zbl 0115.09902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.