zbMATH — the first resource for mathematics

How to build a barricade. (English) Zbl 0542.52010
Given a packing \(\mathcal C=\{C_i\mid i\in I\}\) of congruent copies of a strictly convex planar set \(C\) in a parallel strip \(S\) of width \(w\) and a straight line \(\ell\), let \(| \ell \cap \mathcal C|\) denote the sum of the lengths of the segments \(\ell \cap C_i\) over all \(i\in I\). It is proved that \[ \sup_{\mathcal C}\inf_{\ell}| \ell \cap {\mathcal C}| =(\delta(C)+o(1))w, \] where \(\delta (C)\) is the density of the densest packing of congruent copies of \(C\) in the plane. Some generalizations are also considered.
Reviewer: Peter Frankl

52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
60D05 Geometric probability and stochastic geometry
Full Text: DOI EuDML
[1] Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Grundlehren Math. Wiss. Bd. 65. Berlin-Göttingen-Heidelberg: Springer. 1953, 1972. · Zbl 0052.18401
[2] Fejes Tóth, L.: personal communication.
[3] Feller, W.: An Introduction to Probability Theory and Its Applications. New York: Wiley. 1965. · Zbl 0139.26002
[4] Rényi, A.: Wahrscheinlichkeitsrechnung, mit einem Anhang über Informationstheorie. Berlin: VEB Deutscher Verlag der Wissenschaften. 1968. · Zbl 0215.53101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.