×

The finite element solution of second order elliptic problems with the Newton boundary condition. (English) Zbl 0542.65063

The convergence in both the \(H^ 1\) and \(L_ 2\) norms for a second order elliptic problem in n-dimensional Euclidean space (\(n\geq 2)\) with Newton boundary condition is analysed. Following P. G. Ciarlet and P. A. Raviart [Math. Found. finite Elem. Method Appl. part. differ. Equations, Sympos. Univ. Maryland, Baltimore 1972, 409-474 (1972; Zbl 0262.65070)] the author introduces the numerical isoparametric integration on both ”volume” and surface elements and analyses the obtained fully discrete problem. An estimate for the discretization error in \(H^ 1\) and \(L_ 2\) norms is given.
Reviewer: P.Chocholatý

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Citations:

Zbl 0262.65070
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland. Amsterdam. 1978. · Zbl 0383.65058
[2] P. G. Ciarlet P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz Editor). Academic Press. New York and London. 1972. · Zbl 0262.65070
[3] A. Kufner O. John S. Fučík: Function Spaces. Academia. Praha, 1977.
[4] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia. Prague. 1967. · Zbl 1225.35003
[5] J. Nedoma: The finite element solution of parabolic equations. Apl. Mat., 23 (1977), 408-438. · Zbl 0427.65075
[6] J. Nedoma: The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements. R.A.I.R.O. Numer. Anal., 13 (1979), 257-289. · Zbl 0413.65080
[7] K. Rektorys: Variační metody. SNTL. Praha. 1974. · Zbl 0371.35001
[8] R. Scott: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal., 12 (1975), 404-427. · Zbl 0357.65082 · doi:10.1137/0712032
[9] G. Strang: Approximation in the finite element method. Numer. Math., 19 (1972), 81-98. · Zbl 0221.65174 · doi:10.1007/BF01395933
[10] M. Zlámal: Curved elements in the finite element method I. SIAM J. Numer. Anal., 10 (1973), 229-240. · Zbl 0285.65067 · doi:10.1137/0710022
[11] M. Zlámal: Curved elements in the finite element method II. SIAM J. Numer. Anal., 11 (1974), 347-369. · Zbl 0277.65064 · doi:10.1137/0711031
[12] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat., 26 (1981), 121-141.
[13] A. Ženíšek: Discrete forms of Friedrichs’ inequalities in the finite element method. R.A.I.R.O. Numer. Anal., 15 (1981), 265-286. · Zbl 0475.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.