Bloch waves for a solid-fluid mixture. (English) Zbl 0542.73063

See the preview in Zbl 0525.73025.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
76A02 Foundations of fluid mechanics
49R50 Variational methods for eigenvalues of operators (MSC2000)
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
74E10 Anisotropy in solid mechanics


Zbl 0525.73025
Full Text: DOI Numdam EuDML


[1] Achenbach, J.D.. «Waves and vibrations in directionally reinforced composites». Composite materials, vol. 2, Mechanics of composite materials L.J. Broutman, R.M. Kroch (ed.). Academic Press, New-York (1975), pp. 309-351.
[2] Bensoussan, A., Lions, J.L., Papanicolaou, G.. «Asymptotic analysis for periodic structures». North-Holland, Amsterdam (1978). · Zbl 0404.35001
[3] Delph, T.J., Herrmann, G., Kaul, R.K.. «Harmonic wave propagation in a periodically layered, infinite elastic body, antiplane strain». J. Appl. Mech., 45 (1978), pp. 343-349.
[4] Sanchez-Hubert, J.. «Asymptotic study of the macroscopic behaviour of a solidfluid mixture». Math. Meth. Appl. Sci., 2 (1980) pp. 1-11. · Zbl 0427.73025
[5] Sanchez-Palencia, E.. «Non-homogeneous media and vibration theory». Springer, Berlin (1980). · Zbl 0432.70002
[6] Sun, C.T., Achenbach, J.D., Herrmann, G.. «Continuum theory foralaminated medium». J. Appl. Mech.35 (1968), pp. 467-473. · Zbl 0177.54303
[7] Sve, C.. «Time harmonic waves traveling obliquely in a periodically laminated medium». J. Appl. Mech.38 (1971), pp. 477-482.
[8] Turbe, N.. «Applications of Bloch expansion to periodic elastic and viscoelastic media». Math. Meth. Appl. Sci.4 (1982) pp. 433-449. · Zbl 0495.73014
[9] Turbe, N.. Thèse de Doctorat, Université Pierre et Marie Curie (1982).
[10] Turbe, N.. Communication colloque du Groupe Français de Rhéologie (1982).
[11] Wilcox, C.H.. «Theory of Bloch waves». J. Anal. Math.33 (1978) pp. 146-167. · Zbl 0408.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.