zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcating periodic solutions for a class of age-structured predator- prey systems. (English) Zbl 0542.92023
The author uses bifurcation theory to provide sufficient conditions for the existence of periodic solutions corresponding to the steady states of predator-prey systems. The characteristic of the system is that predators prefer to eat very old and very young preys. Such a condition leads to a system of partial differential equations of McKendrick’s type and to an integrodifferential equation of Volterra type.
Reviewer: G.Karakostas

MSC:
92D25Population dynamics (general)
35B10Periodic solutions of PDE
45J05Integro-ordinary differential equations
35B32Bifurcation (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Cheatum, E. L. and C. W. Severinghaus. 1950. ”Variations in Fertility of White Tailed Deer Related to Range Conditions”. Transactions of the Fifteenth North American Wildlife Conference.
[2] Cushing, J. M. 1977. ”Bifurcation of Periodic Solutions of Integrodifferential Systems with Applications to Time Delay Models in Population Dynamics”.SIAM J. appl. Math. 33, 640--654. · Zbl 0381.45008 · doi:10.1137/0133045
[3] --, 1980. ”Model Stability and Instability in Age-structured Populations”.J. theor. Biol. 86, 709--730. · doi:10.1016/0022-5193(80)90307-0
[4] -- 1982. ”Bifurcation of Periodic Solutions of Nonlinear Equations in Age-structured Population Dynamics”. In.Proceedings of the International Conference on Nonlinear Mathematics and Applications, Arlington, TX. New York: Academic Press. · Zbl 0515.92018
[5] Gurtin, M. E. and D. S. Levine. 1979. ”On Predator-Prey Interactions with Predation Dependent on Age of Prey”.Math. Biosci. 47, 207--219. · Zbl 0435.92023 · doi:10.1016/0025-5564(79)90038-5
[6] -- and----. 1982. ”On Populations that Cannibalize their Young”.SIAM J. appl. Math. 42, 94--108. · Zbl 0501.92021 · doi:10.1137/0142008
[7] -- and R. C. MacCamy. 1979. ”Some Simple Models for Non-linear Age-dependent Population Dynamics”.Math. Biosci. 43, 199--211. · Zbl 0397.92025 · doi:10.1016/0025-5564(79)90049-X
[8] Hassell, M. P. 1979.The Dynamics of Arthropod Predator-Prey Systems. Princeton, NJ: Princeton University Press. · Zbl 0429.92018
[9] Kolmogorov, A. N. 1936. ”Sulla Teoria di Volterra della Lotta per l’Esistenza”.Biorn. Inst. Intal. Attuari 7, 74--80. · Zbl 62.1263.01
[10] Levine, D. S. 1981. ”On the Stability of a Predator-Prey System with Egg-eating Predators”.Math. Biosci. 56, 27--46. · Zbl 0461.92015 · doi:10.1016/0025-5564(81)90026-2
[11] McKendrick, A. G. 1926. ”Applications of Mathematics to Medical Problems”.Proc. Edinb. math. Soc. 44, 98--130. · Zbl 52.0542.04 · doi:10.1017/S0013091500034428
[12] Mech, L. D. 1970,The Wolf: Ecology and Behavior of an Endangered Species, Garden City, NY: Natural History Press.
[13] Nicholson, A. J. 1954. ”An Outline of the Dynamics of Animal Populations”.Aust. J. Zool. 2, 9--65. · doi:10.1071/ZO9540009
[14] Ricklefs, R. E. 1973.Ecology, Newton, MA: Chiron Press.