zbMATH — the first resource for mathematics

A new product of algebras and a type reduction theorem. (English) Zbl 0543.08005
For every finite similarity type T there is constructed an isomorphism F of the category of T-algebras with a full subcategory of the category of groupoids with the following properties: (1) F(A) is finite iff A is finite; (2) F(A) is finitely based iff A is finitely based; (3) \(End(F(A))\simeq End(A);\quad Sub(F(A))\simeq Sub(A);\quad Con(F(A))\simeq 1\oplus Con(A).\) A new product operation, applicable to two algebras of different similarity types, is introduced, used in the construction of F and also studied separately.
Reviewer: J.Ježek

08B05 Equational logic, Mal’tsev conditions
08C05 Categories of algebras
08A40 Operations and polynomials in algebraic structures, primal algebras
Full Text: DOI
[1] S.Burris and R.McKenzie (1981),Decidability and Boolean representations. Memoirs Amer. Math. Soc. 32, No. 246. · Zbl 0483.03019
[2] M.Gould (1981),Rectangular bands in universal algebra: two applications. To appear in Acta Sci. Math. (Szeged). · Zbl 0502.08006
[3] W. Hanf (1956),Representations of lattices by subalgebras (preliminary report). Bull. Amer. Math. Soc.62, p. 402.
[4] Z. Hedrlin andJ. Lambek (1969),How comprehensive is the category of semigroups? J. Algebra11, 195-212. · Zbl 0206.02505 · doi:10.1016/0021-8693(69)90054-4
[5] J. Froemke andR. Quackenbush (1975),The spectrum of an equational class of groupoids. Pac. J. Math.58, 381-386. · Zbl 0326.08007
[6] J.Jez?k (1975),Endomorphism semigroups and subgroupoid lattices. Colloquia Mathematica Societatis Janos Bolyai 17, Contributions to Universal Algebra, Szeged, pp. 209-212.
[7] J. Je?ek (1976),Intervals in the lattice of varieties. Algebra Universalis6, 147-158. · Zbl 0354.08007 · doi:10.1007/BF02485826
[8] J.Je?ek (1981),The lattice of equational theories. To appear (in three parts) in Czech. Math. Jour.
[9] W.Lampe (1977),Congruence lattice representations and similarity type. Proceedings of the Colloquium on Universal Algebra, Esztergom 1977. · Zbl 0482.08003
[10] W.Lampe (1982),Congruence lattices of algebras of fixed similarity type, II. To appear in Pac. J. Math. · Zbl 0511.08001
[11] R. McKenzie (1971),Definability in lattices of equational theories. Annals Math. Logic3, 197-237. · Zbl 0328.02038 · doi:10.1016/0003-4843(71)90007-6
[12] R. McKenzie (1975),On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model. Journal Symbolic Logic40, 186-196. · Zbl 0316.02052 · doi:10.2307/2271899
[13] R.McKenzie (1982),Finite forbidden lattices. (Preprint)
[14] A. Pixley (1971),The ternary discriminator function in universal algebra. Math. Ann.191, 167-180. · Zbl 0208.02702 · doi:10.1007/BF01578706
[15] I. Rosenberg (1973),The number of maximal closed classes in the set of functions over a finite domain. J. Combinatorial Theory14, 1-7. · Zbl 0257.05006 · doi:10.1016/0097-3165(73)90058-7
[16] G. Rousseau (1967),Completeness in finite algebras with a single operation. Proc. Amer. Math. Soc.18, 1009-1013. · Zbl 0157.04103 · doi:10.1090/S0002-9939-1967-0217002-1
[17] A. Tarski (1968),Equational logic and equational theories of algebras. Contributions to Mathematical Logic (Colloquium, Hannover, 1966), North-Holland, pp. 275-288.
[18] W. Taylor (1973),Characterizing Mal’cev conditions. Algebra Universalis3, 351-397. · Zbl 0304.08003 · doi:10.1007/BF02945141
[19] W. Taylor (1975),The fine spectrum of a variety. Algebra Universalis5, 262-303. · Zbl 0336.08004
[20] W.Taylor (1979),Equational logic. Houston J. Math. (surveys). · Zbl 0421.08004
[21] H. Werner (1978),Discriminator Algebras. Studien zur Algebra und ihre Anwendungen, Band 6, Akademie-Verlag, Berlin.
[22] T.Whaley (1968),Algebras satisfying the descending chain condition for subalgebras. Thesis, Vanderbilt University, 50 pp. · Zbl 0169.32602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.