Voronoi’s congruence via Bernoulli distributions. (English) Zbl 0543.10012

The author proves two congruences modulo an arbitrary positive integer \(N\) for Bernoulli numbers \(B_{2k}\), \(k\geq 1\). Let \(c\) be a rational number with numerator and denominator prime to \(N\). The first congruence is essentially Voronoi’s congruence, where the integral parameter is replaced by \(c\). The second congruence reads \[ (c-1) B_{2k} N/2\equiv \sum^{N-1}_{s=1}s^{2k} [sc/N]\pmod N. \] Cf. the author [J. Number Theory 16, 87–94 (1983; Zbl 0507.10008)].


11B68 Bernoulli and Euler numbers and polynomials


Zbl 0507.10008
Full Text: EuDML


[1] W. Johnson: p-adic proofs of congruences for the Bernoulli numbers. J. Number Th. 7 (1975), 251-265. · Zbl 0308.10006
[2] O. Grün: Eine Kongruenz für Bernoullische Zahlen. Jahresber. d. Deutschen Math. Verein. 50 (1940), 111-112. · Zbl 0023.20302
[3] S. Lang: Cyclotomic Fields. Springer-Verlag, New York 1978. · Zbl 0395.12005
[4] J. Uspenski, M. Heaslet: Elementary Number Theory. McGraw-Hill, New York 1939. · Zbl 0022.30602
[5] J. Slavutskij: Generalized Voronoi’s congurence and the number of classes of ideals of an imaginary quadratic field II. (Russian), Izv. Vyšš. Učebn. Zavedenij, Math. 4 (53) (1966), 118-126.
[6] H. S. Vandiver: Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat’s quotient and Bernoulli numbers. Ann. Math. 18 (1917), 105-114. · JFM 46.1444.03
[7] H. S. Vandiver: On Bernoulli numbers and Fermat’s last theorem. Duke Math. J. 3 (1937), 569-584. · Zbl 0018.00505
[8] G. F. Voronoi: On Bernoulli numbers. (Russian), Commen. Charkov Math. Soc. 2 (1890), 129-148; or in Collected Papers, Vol. I, Publ. House Of the Ukrainian Acad. Sci., Kiev 1952.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.