×

zbMATH — the first resource for mathematics

Zur Hardyschen Ungleichung. (German) Zbl 0543.26007
Semin. Anal. 1982/83, 1-18 (1983).
The author points out various generalizations of the Hardy’s inequality \[ \int^{\infty}_{0}| u(t)|^ pt^{\epsilon - p}dt\leq(p/| \epsilon -p+1|)^ p\int^{\infty}_{0}| u'(t)|^ pt^{\epsilon}dt, \] where \(\epsilon \neq p-1\) and \(\lim_{t\to 0+}u(t)=0\) if \(\epsilon<p-1\), \(\lim_{t\to \infty}u(t)=0\) if \(\epsilon>p-1\). The results are quoted without proofs.
Reviewer: M.Jůza

MSC:
26D10 Inequalities involving derivatives and differential and integral operators
Citations:
Zbl 0543.26008