zbMATH — the first resource for mathematics

A tiny peculiar Fréchet space. (English) Zbl 0543.54021
The authors construct an example of a countable sequentially regular Fréchet space which fails to be regular (X is called sequentially regular) if for each \(f\in C(X) x_ n\to x\Leftrightarrow f(x_ n)\to f(x)\).
Reviewer: A.I.Bashkirov

54D55 Sequential spaces
54G20 Counterexamples in general topology
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
Full Text: EuDML
[1] R. Engelking: General topology. Warszawa 1977. · Zbl 0373.54002
[2] S. P. Franklin: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115. · Zbl 0132.17802
[3] M. Fréchet: Sur quelques points du calcul functionel. Rend. Cire. Mat. Palermo 22 (1906), 1-74. · JFM 37.0348.02
[4] R. Frič: A note on Fréchet spaces. Comment. Math. Univ. Carolinae 13 (1972), 411 to 418.
[5] R. Frič: Further note on Fréchet spaces. Comment. Math. Univ. Carolinae 14 (1973), 661-667. · Zbl 0267.54024
[6] R. Frič: On E-sequentially regular spaces. Czechoslovak Math. J. 26 (101) (1976), 604-612. · Zbl 0339.54005
[7] F. Frič V. Koutník: Sequential structures. Convergence structures and applications to analysis. Abh. Akad. Wiss. DDR, Abt. Math. - Naturwiss. - Technik, 1979, N4 4N. Akademie Verlag, Berlin 1980, 37-56.
[8] F. Frič V. Koutník: Sequential convergence since Kanpur conference. General Topology and its Relations to Modern Analysis and Algebra. V (Proc. Fifth Prague Topological Sympos., Prague, 1981). Heldermann Verlag, Berlin, 1982, 193-205.
[9] R. Frič P. Vojtáš: Variants of complete regularity. Abstracts Amer. Math. Soc. Vol. 2, Number 6, October 1981, # 81T-54-572, 556.
[10] F. B. Jones: Moore spaces and uniform spaces. Proc. Amer. Math. Soc. 9 (1958), 483-486. · Zbl 0091.36102
[11] P. Mikusinski: Problems posed at the conference. Proc. Conf. on Convergence, Szczyrk, 1979, Katowice, 1980, 110-112.
[12] V. Koutník: On sequentially regular convergence spaces. Czechoslovak Math. J. 17 [92] (1967), 232-247. · Zbl 0173.24903
[13] J. Novák: Regulární prostor, na němž je každá spojita funkce konstantní. Čas. pěst. mat. a fyz. 75 (1948), 58-68.
[14] J. Novák: On convergence spaces and their sequential envelopes. Czechoslovak Math. J. 15 (90) (1965), 74-100. · Zbl 0139.15906
[15] J. Novak: On some problems concerning the convergence spaces and groups. General Topology and its Relations to Modern Analyzis and Algebra (Proc. Kanpur Topological Conf., 1968). Academia, Praha 1970, 219-229.
[16] F. Siwiec: Generalizations of the first axiom of countability. Rocky Mountain J. Math. 5 (1975), 1-60. · Zbl 0294.54021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.