## Joint continuity and representations of additive functionals of d- dimensional Brownian motion.(English)Zbl 0543.60080

A correspondence exists between additive functionals, $$A_ t$$, of d- dimensional Brownian motion and measures, $$\mu$$, on $$R^ d$$. When $$d=1$$, a well-known result of Ito and Mc’Kean states that every $$A_ t$$ can be represented by (1) $$A_ t=\int L(t,y)\mu(dy)$$, where $$\mu$$ is the corresponding measure on R and L(t,y) is the local time at y.
The author first gives conditions on $$\mu_ a$$, 0$$\leq a\leq 1$$, which guarantee that the corresponding $$A^ a_ t$$ will be jointly continuous in a and t almost surely. This result is then used to produce a d- dimensional analogue to (1).
For $$d>1$$ no local time exists. However, if $$W_ t=(W^ 1_ t$$, $$W^ 2_ t,...,W^ d_ t)$$ represents a d-dimensional Brownian motion and $$\cdot$$ denotes inner product, we can let L(t,s,v) denote the local time of $$W_ t\cdot v$$ at s. If $$B=\{v:| v| =1\}$$, set $$A^ b_ t=\int \int_{B}\int^{\infty}_{-\infty}I_ b(s-y\cdot v)\quad L(t,s,v)\quad ds\quad dv\quad d\mu$$, where $$I_ b(y)=(2\pi)^{- d}\int_{0}^{\infty}\cos(qy)q^{d-1}\exp(-bq^ 2/2)dq$$. The following result, analogous to (1), is shown. If $$\mu$$ is any measure such that $$\mu(\{y:| y-x|<\delta \})\leq c\delta^{d-2+\nu}$$ for some constants $$c,\nu>0$$ independent of x, then for each $$u>0$$ we have, almost surely, $$\lim_{b\to 0} \sup_{t\leq u}| A_ t-A^ b_ t| =0$$.
Reviewer: E.Boylan

### MSC:

 60J55 Local time and additive functionals 60H05 Stochastic integrals 60G15 Gaussian processes

### Keywords:

 [1] Blumenthal, R. M.; Getoor, R. K., Markov Processes and Potential Theory (1968), Academic Press: Academic Press New York · Zbl 0169.49204 [2] Brelot, M., Éléments de la Théorie Classique du Potentiel (1959), Les cours de Sorbonne, Centre de Documentation Univ: Les cours de Sorbonne, Centre de Documentation Univ Paris · Zbl 0084.30903 [3] Brosamler, G. A., Quadratic Variation of Potentials and Harmonic Functions, Trans. Amer. Math. Soc., 149, 243-257 (1970) · Zbl 0248.60057 [4] Burkholder, D. L.; Davis, B.; Gundy, R., Integral Inequalities for Convex Functions of Operators on Martingales, Proc. 6th Berkeley Symposium, 223-240 (1972) · Zbl 0253.60056 [5] (Erdelyi, A., Tables of Integral Transforms (1954), McGraw-Hill: McGraw-Hill New York) · Zbl 0055.36401 [6] Folland, G. B., Introduction to Partial Differential Equations (1976), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0325.35001 [7] Ito, K.; McKean, H. P., Diffusions and their Sample Paths (1965), Springer: Springer New York · Zbl 0127.09503 [8] McKean, H. P.; Tanaka, H., Additive Functionals of the Brownian Motion Path, Mem. Coll. Sci. Univ. Kyoto, 33, 479-506 (1961) · Zbl 0100.34201 [9] Meyer, P. A., Probability and Potentials (1966), Blaisdell: Blaisdell Waltham, MA · Zbl 0138.10401 [10] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0207.13501 [11] Wang, A. T., Generalized Ito’s Formula and Additive Functionals of Brownian Motion, Z. Wahrschein, 41, 153-159 (1977) · Zbl 0349.60081 [12] Yor, M., Sur la Transformée de Hilbert des Temps Locaux Browniens, et une Extension de la Formule d’Itô, (Séminaire de Probabilités, XVI (1982), Springer: Springer Berlin) · Zbl 0495.60080 [13] Bass, R., Occupation Times for $$d$$-dimensional Semimartingales, (Seminar on Stochastic Processes 1982 (1983), Birkhäuser: Birkhäuser Basel) · Zbl 0526.60045