Thin elastic and periodic plates. (English) Zbl 0543.73073

Starting from linear three-dimensional elasticity, the paper studies elastic plates with periodic properties, such as periodic perforation, by homogeneization methods. When the period \(\epsilon\) is (i) much smaller than or (ii) comparable with the plate thickness h, previous work by G. Duvaut, P. Destuynder, M. Schneider, et al. does not apply. Case (ii) is studied in detail in this paper. New results for the homogeneization moduli are obtained in the limit h, \(\epsilon \to 0\), with a fixed ratio \(\lambda =\epsilon /h\).
Reviewer: H.J.Weinitschke


74K20 Plates
74E10 Anisotropy in solid mechanics
74E05 Inhomogeneity in solid mechanics
Full Text: DOI


[1] Bensoussan, Asymptotic Analysis for periodic Structures (1978)
[2] Caillerie, Homogénéisation des équations de la diffusion staticnnaire dans des domaines cylindriques aplatis, R. A. I. R. O. Analyse Numérique 15 (4) pp 295– (1981) · Zbl 0483.35003
[3] Caillerie, Plaques élastiques minces à structure périodique de période et d’épaisseur comparable, C. R. A. S. Paris, série II 294 (1982)
[4] Ciarlet, A justification of the two-dimensional linear plate model, J. de Mécanique 18 pp 315– (1979) · Zbl 0415.73072
[5] Ciarlet, A justification of a nonlinear model in plate theory, Comput. Meth. in Appl. Mech. Engng. 17/18 pp 227– (1979) · Zbl 0405.73050
[6] Ciarlet, Two-dimensional approximations of three-dimensional eigenvalue problem in plate theory, Comput. Meth. in Appl. Mech. Engng. 26 pp 145– (1981) · Zbl 0489.73057
[7] Ciarlet, Les équations de Von Karman (1980) · Zbl 0433.73019
[8] Destuynder, Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques (1980)
[9] Duvaut, Theoretical and Applied Mechanics pp 119– (1978)
[10] Duvaut , G. Comportement macroscopique d’une plaque perforée périodiquement 1976
[11] Duvaut, Journées d’Analyse non linéaire (1978)
[12] Lecture Notes in Mathematics n{\(\deg\)} 665 56 69
[13] Duvaut, Les inéquations en mécanique et en physique (1972)
[14] Duvaut, Résultats d’isotropie pour des milieux homogénéisés, C. R. A. S. Paris série II 293 pp 477– (1981)
[15] Duvaut, Homogénéisation d’une plaque mince en flexion de structure périodique et symétrie, C. R. A. S. Paris, série A 283 (1976)
[16] Gilbert , R. P. Hsiao , G. C. Schneider , M. The two-dimensional, linear orthotropic plate Univ. of Delaware · Zbl 0516.73053
[17] Jones, Mechanics of composite Materials (1975)
[18] Kohn , R. V. Vogelins , M. A new model for thin elastic plates with rapidly varying thickness Courant Institute - Univ. of New York
[19] Pagano, Composite Materials 2 pp 1– (1974)
[20] Sanchez-Palencia, Non-homogeneous media and vibration theory (1980) · Zbl 0432.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.