×

zbMATH — the first resource for mathematics

Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. (English) Zbl 0543.76050
Some critical considerations on the models of ”extended irreversible thermodynamics” are given. By developing a methodology (”invariance of the generators”) based both on the ideas of the ”extended irreversible thermodynamics” and the ”entropy principle” in its general formulation of ”rational thermodynamics”, a theory for a Newtonian thermoviscous fluid is proposed.

MSC:
76D99 Incompressible viscous fluids
76A05 Non-Newtonian fluids
82B35 Irreversible thermodynamics, including Onsager-Machlup theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Modena3, 83-101 (1948). Sur une forme d’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sc. Paris247, 431-433 (1958).
[2] Müller, I.: Zum Paradoxen der Wärmeleitungstheorie. Zeitschrift für Physik198, 329-344 (1967). · doi:10.1007/BF01326412
[3] Carassi, M., Morro, A.: A modified Navier Stokes equation, and its consequences on sound dispersion. Nuovo Cimento9B?, 321-343 (1972).
[4] Lebon, G.: Derivation of generalized Fourier and Stokes-Newton equations based on the thermodynamics of irreversible processes. Acad. Roy. Soc. Belgique64, 456-472 (1978).
[5] Lebon, G., Jou, D., Casas Vasquez, J.: An extension of the local equilibrium hypothesis. J. of Physics13A, 275-290 (1980). A dynamical interpretation of second order constitutive equations of hydrodynamics. J. Non-Eq. Thermodyn.4, 349-362 (1979).
[6] Lebon, G., Rubi, J. M.: A generalized theory of thermoviscous fluids. J. Non-Eq-Thermodyn.5, 285-300 (1980). · Zbl 0442.73006 · doi:10.1515/jnet.1980.5.5.285
[7] Müller, I.: Zur Ausbreitungsgeschwindigkeit von Störungen in Kontinuierlichen Medien. Doctor thesis, Darmstadt (1966).
[8] Krany?, M.: Relativistic hydrodynamics with irreversible thermodynamics without the paradoxe of infinite velocity of heat conduction. Nuovo Cimento48B, 51-70 (1966). Kinetic derivation of nonstationary general relativistic thermodynamics. Nuovo Cimento8B, 417-441 (1972).
[9] Israel, W.: Non stationary irreversible thermodynamics: a casual relativistic theory. Ann. Physics100, 310-331 (1976). · doi:10.1016/0003-4916(76)90064-6
[10] Israel, W., Stewart, J. M.: Transient relativistic thermodynamics and kinetic theory. Ann. Physics118, 341-372 (1979). · doi:10.1016/0003-4916(79)90130-1
[11] Boillat, G.: Relativistic hyperbolic heat equations. Lett. Nuovo Cimento10, 295-300 (1974). Incompressible relativistic fluid with heat conduction. Lett. Nuovo Cimento10, 352-354 (1974). · doi:10.1007/BF02819381
[12] Massa, E., Morro, A.: A dynamical approach to relativistic continuum thermodynamics. Ann. Inst. H. Poincaré24, 423-454 (1978). · Zbl 0401.73007
[13] Dixon, G.: Special relativity, the foundation of macroscopic physics. Cambridge (1978). · Zbl 0392.53041
[14] Noll, W.: On the continuity of the solid and fluid states. J. Rat. Mech. Anal.4, 3-81 (1955). · Zbl 0064.42001
[15] Coleman, B. D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rat. Mech. Anal.13, 167-178 (1963). · Zbl 0113.17802 · doi:10.1007/BF01262690
[16] Coleman, B. D.: Thermodynamics of materials with memory. Arch. Rat. Mech. Anal.17, 1-46 (1964).
[17] Gurtin, M.: On the thermodynamics of materials with memory. Arch. Rat. Mech. Anal.28, 40-50 (1968). · Zbl 0169.28002 · doi:10.1007/BF00281562
[18] Truesdell, C.: Rational Thermodynamics. New York: McGraw-Hill 1969. · Zbl 0598.73002
[19] Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Rat. Mech. Anal.40, 319-332 (1971). Entropy in non equilibrium. A challenge to mathematicians. In: Trend in application of pure mathematics to mechanics (Zorski, H., ed.), Vol. II, pp. 281-295. London: Pitman 1979.
[20] Green, A. E., Lindsay, K. A.: Thermoelasticity. J. Elasticity2, 1-7 (1972). · Zbl 0775.73063 · doi:10.1007/BF00045689
[21] Grioli, G.: Sulla propagazione di onde termomeccaniche nei continui. Atti Accad. Naz. Lincei. Nota I67 (5), 332-339; Nota II67 (6), 426-432 (1979). · Zbl 0446.73098
[22] Kluitenberg, G. A.: On linear dynamical equations of state for isotropic media. Physica93A, 273-284 (1978).
[23] Morro, A.: Wave propagation in thermo-viscous materials with hidden variables. Arch. Mech.32, 145-161 (1980). · Zbl 0434.73006
[24] Hutter, K.: The foundations of thermodynamics. its basic postulates and implications. A review of modern thermodynamics. Acta Mechanics27, 1-54 (1977). · doi:10.1007/BF01180075
[25] Bampi, F., Morro, A.: Viscous fluids with hidden variables and hyperbolic systems. Wave Motion2, 153-157 (1980). · Zbl 0481.76072 · doi:10.1016/0165-2125(80)90024-4
[26] Hadamard, J.: Conférence faite le 17 juin 1935 à l’Université de Genève. Reproduites dans Oeuvres de J. Hadamard, Ed. C. N. R. S. (1968).
[27] Boillat, G.: Caractéristiques complexes et instabilité des champs quasi linéaire. Rend. Circolo Mat. di Palermo30, 416-420 (1981). · Zbl 0485.76111 · doi:10.1007/BF02844654
[28] Jeffrey, A.: Quasi-linear hyperbolic systems and waves. (Research Note 5.) London: Pitman 1976. · Zbl 0322.35060
[29] Boillat, G.: La propagation des ondes. Paris: Gauthier-Villars 1965. · Zbl 0151.45104
[30] Boillat, G., Ruggeri, T.: On the evolution law of weak discontinuities for hyperbolic quasi-linear systems. Wave Motion1 (2), 149-152 (1979). · Zbl 0418.35065 · doi:10.1016/0165-2125(79)90017-9
[31] Ruggeri, T.: Sulla forma conservativa di sistemi iperbolici quasi-lineari. Caso dei gas ionizzati e della termofluidodinamica relativistica. Rend. di Matematica13, 223-234 (1980). · Zbl 0456.76105
[32] Friedrichs, K. O.: On the laws of relativistic electro-magnetofluid dynamics. Comm. Pure Appl. Math.27, 749-808 (1974). · Zbl 0308.76075 · doi:10.1002/cpa.3160270604
[33] Choquet Bruhat, Y.: Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires. J. Math. pures Appl.48, 117-158 (1969). · Zbl 0177.36404
[34] Chen, P. J.: Growth and decay of waves in solids. In: Mechanics of solids III (Handbuch des Pysik, 6a/3), pp. 303-402. Berlin-Heidelberg-New York: Springer 1973.
[35] Boillat, G.: Ondes asymptotiques non linéaires. Ann. Mat. Pura Appl.111, 31-44 (1976). · Zbl 0355.35013 · doi:10.1007/BF02411808
[36] Anile, A. M., Majorana, A.: Shock structure for heat conducting and viscid fluids Meccanica16 (3), 149-156 (1981). · Zbl 0486.76087 · doi:10.1007/BF02128443
[37] Gilbarg, D., Paolucci, P.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. An.2, 617-642 (1953). · Zbl 0051.18102
[38] Landau, L., Liftshitz, E.: Mecanique des fluides, p. 425. Moscow: MTR 1971.
[39] Whitham, G. B.: Linear and non-linear waves, p. 32 and p. 187. New York: Wiley 1974. · Zbl 0373.76001
[40] Friedrichs, K. O., Lax, P. D.: System of conservation equations with a convex extension. Proc. Nat. Acad. Sc. USA68, 1686-1688 (1971). · Zbl 0229.35061 · doi:10.1073/pnas.68.8.1686
[41] Boillat, G.: Sur l’éxistence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sc. Paris278A, 909-912 (1974). Sur une fonction croissant comme l’entropie et génératrice des chocs dans les systèmes hyperboliques. C. R. Acad. Sc. Paris283A, 409-412 (1976). · Zbl 0279.35058
[42] Ruggeri, T., Strumia, A.: Main field and convex covariant density, for quasi-linear quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. Poincaré34, 65-84 (1981). · Zbl 0473.76126
[43] Ruggeri, T.: Entropy principle and main field for a non linear covariant system. Lecture notes of the first CIME session on ?Wave propagation?, Bressanone (1980), 257-273. Napoli: Liguori Ed. 1982.
[44] Ruggeri, T., Strumia, A.: Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics. J. Math. Physics22, 1824-1827 (1981). · Zbl 0469.76130 · doi:10.1063/1.525129
[45] Ruggeri, T.: Non linear P.D.E. with a supplementary conservation law: conducting and viscid fluids (to be published).
[46] Liu, I-Shih: Method of Lagrange multipliers for exploitation of entropy principle. Arch. Rat. Mech. anal.346, 131-148 (1972). · Zbl 0252.76003
[47] Godunov, S. K.: An interesting class of quasilinear systems. Sov. Math.2, 947-948 (1961). · Zbl 0125.06002
[48] Volpert, A. I., Hudiaev, S. I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR Sbornik10, 571-574 (1972). · Zbl 0255.35013 · doi:10.1070/SM1972v017n04ABEH001603
[49] Boillat, G.: Convexité et hyperbolicité en électrodynamique non linéaire. C. R. Acad. Sc. Paris290A, 259-261 (1980). · Zbl 0427.35068
[50] Boillat, G., Ruggeri, T.: Symmetric form of non linear mechanics equations and entropy growth across a shock. Acta Mechanica35, 271-274 (1980). · Zbl 0474.73037 · doi:10.1007/BF01190402
[51] Fischer, A., Marsden, D. P.: The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system. Comm. Math. Phys.28, 1-38 (1972). · Zbl 0247.35082 · doi:10.1007/BF02099369
[52] Boillat, G., Ruggeri, T.: Limite de la vitesse des chocs dans les champs à densité d’énergie convex. C. R. Acad. Sc. Paris,289A, 257-258 (1979). · Zbl 0417.73027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.