zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Persistence and extinction in single-species reaction-diffusion models. (English) Zbl 0543.92020
This report studies the effects of three different dispersal mechanisms on species survival by analyzing reaction-diffusion models. Models of the discrete type in the form of ordinary differential equations and their continuous analogues in the form of partial differential equations are studied. For the purpose of comparison it is assumed that the species biological reaction mechanism is governed by the logistic equation: $(du/dt)=u[a-bu]$. The effects of various methods of dispersal on a logistic population are then examined. Three types of diffusion mechanisms are presented which are referred to as linear diffusion, biased diffusion and directed diffusion. A population modelled by the logistic equation represents a persistent population; however, population extinction can result if the population disperses over a region and dispersion is modelled by linear diffusion. A population modelled by either biased diffusion or directed diffusion cannot result in population extinction. In fact, the chances of population survival may be increased.

MSC:
92D25Population dynamics (general)
35B35Stability of solutions of PDE
92D40Ecology
35K60Nonlinear initial value problems for linear parabolic equations
WorldCat.org
Full Text: DOI
References:
[1] Alikakos, N. D. 1979. ”An application of the invariance principle to reaction-diffusion equations.”J. Diff. Eq. 33, 201--225. · Zbl 0386.34046 · doi:10.1016/0022-0396(79)90088-3
[2] Allen, L. J. 1981. ”Applications of differential inequalities to persistence and extinction problems for reaction-diffusion systems.” Ph.D. thesis, The University of Tennessee, Knoxville.
[3] Coddington, E. A. and N. Levinson. 1955.Theory of Ordinary Differential Equations. New York: McGraw-Hill. · Zbl 0064.33002
[4] Goh, B. S. 1977. ”Global stability in a many-species system.”Am. Nat. 111, 135--143. · doi:10.1086/283144
[5] Gopalsamy, K. and B. D. Aggarwala. 1980. ”On the non-existence of periodic solutions of the reactive-diffusive Volterra system of equations.”J. theor. Biol. 82, 537--540. · doi:10.1016/0022-5193(80)90255-6
[6] Gurney, W. S. C. and R. M. Nisbet. 1975. ”The regulation of inhomogeneous populations.”J. theor. Biol. 52, 441--457. · doi:10.1016/0022-5193(75)90011-9
[7] Gurtin, M. E. and R. C. MacCamy. 1977. ”On the diffusion of biological populations.”Math. Biosci. 33, 35--49. · Zbl 0362.92007 · doi:10.1016/0025-5564(77)90062-1
[8] Hastings, A. 1978. ”Global stability in Lotka-Volterra systems with diffusion.”J. math. Biol. 6, 163--168. · Zbl 0393.92013 · doi:10.1007/BF02450786
[9] Jorné, J. and S. Carmi. 1977. ”Liapunov stability of the diffusive Lotka-Volterra equations.”Math. Biosci. 37, 51--61. · Zbl 0376.92014 · doi:10.1016/0025-5564(77)90077-3
[10] -- and U. N. Safriel. 1979. ”Linear and non-linear diffusion models applied to the behavior of a population of intertidal snail.”J. theor. Biol. 79, 367--380. · doi:10.1016/0022-5193(79)90353-9
[11] Kierstead, H. and L. B. Slobodkin. 1953. ”The size of water masses containing plankton blooms.”J. mar. Res. 12, 141--147.
[12] Kolata, G. B. 1974. ”Theoretical ecology: beginnings of a predictive science.”Science, N. Y. 183, 401--402, 450.
[13] Lakshmikantham, V. and S. Leela. 1969.Differential and Integral Inequalities Theory and Applications, Vol. 1. New York: Academic Press. · Zbl 0177.12403
[14] Landahl, H. D. 1959. ”A note on population growth under random dispersal.”Bull. math. Biophys. 21, 153--159. · doi:10.1007/BF02476357
[15] Leung, A. 1978. ”Limiting behaviour for a prey-predator model with diffusion and crowding effects.”J. math. Biol. 6, 87--93. · Zbl 0386.92011 · doi:10.1007/BF02478520
[16] -- and D. Clark. 1980. ”Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusion equations with Dirichlet boundary data.”J. Diff. Eq. 35, 113--127. · Zbl 0427.35014 · doi:10.1016/0022-0396(80)90052-2
[17] Levin, S. A. 1974. ”Dispersion and population interactions.”Am. Nat. 108, 207--228. · doi:10.1086/282900
[18] -- 1978. ”Population models and community structure in heterogeneous environments.” InStudies in Mathematical Biology, Vol. II:Populations and Communities, Ed. S. A. Levin. Washington, D.C.: M.A.A.
[19] May, R. M. 1975. ”Island biogeography and the design of wildlife preserves.”Nature, Lond. 254, 177--178. · doi:10.1038/254177a0
[20] McMurtrie, M. 1978. ”Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments.”Math. Biosci. 39, 11--51. · Zbl 0384.92011 · doi:10.1016/0025-5564(78)90026-3
[21] Murray, J. D. 1977.Lectures on Nonlinear-differential-Equation Models in Biology. Oxford: Clarendon Press. · Zbl 0379.92001
[22] Okubo, A. 1980. ”Diffusion and ecological problems: mathematical models.” InBiomathematics, Vol. 10, Eds. K. Krickelerg and S. A. Levin. Berlin: Springer-Verlag. · Zbl 0422.92025
[23] Protter, M. H. and H. F. Weinberger. 1967.Maximum Principles in Differential Equations. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0153.13602
[24] Rudin, W. 1974.Real and Complex Analysis, Second Edition. New York: McGraw-Hill. · Zbl 0278.26001
[25] Sansone, G. and R. Conti. 1964.Nonlinear Differential Equations. Oxford: Pergamon Press. · Zbl 0128.08403
[26] Simberloff, D. S. and L. G. Abele. 1976. ”Island biogeography theory and conservation practice.”Science, N.Y. 191, 285--286. · doi:10.1126/science.191.4224.285
[27] Skellam, J. G. 1951. ”Random dispersal in theoretical populations.”Biometrika 38, 196--218. · Zbl 0043.14401 · doi:10.1093/biomet/38.1-2.196
[28] Yodzis, P. 1978. ”Competition for space and the structure of ecological communities.” InLecture Notes in Biomathematics, Ed. S. Levin. Berlin: Springer-Verlag. · Zbl 0387.92009