Brunovsky, Pavol; Chow, Shui-Nee Generic properties of stationary state solutions of reaction-diffusion equations. (English) Zbl 0544.34019 J. Differ. Equations 53, 1-23 (1984). The authors consider stationary solutions of the equation \(u''+f(u)=0,\) with homogeneous Dirichlet or Neumann boundary conditions. They prove that the ”time map” \(\eta \to T(\eta)\) is generically a Morse function. A simpler proof was also given by the reviewer and A. Wasserman [ibid. 52, 432-438 (1984; Zbl 0488.58015)]. Reviewer: J.Smoller Cited in 1 ReviewCited in 37 Documents MSC: 34B99 Boundary value problems for ordinary differential equations 37D15 Morse-Smale systems Keywords:Dirichlet boundary condition; stationary solutions; Neumann boundary conditions; time map; Morse function Citations:Zbl 0488.58015 PDF BibTeX XML Cite \textit{P. Brunovsky} and \textit{S.-N. Chow}, J. Differ. Equations 53, 1--23 (1984; Zbl 0544.34019) Full Text: DOI References: [1] Abraham, R.; Robbin, J., Transversal Mappings and Flows (1967), Benjamin: Benjamin New York · Zbl 0171.44404 [2] Carr, J., Applications of centre manifold theory, (Lecture Notes LCDS LN 79-1 (1979), Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University: Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University Providence, R. I) · Zbl 0464.58001 [3] Chow, S. N.; Mallet-Paret, J., Integral averaging and bifurcation, J. Differential Equations, 26, 112-159 (1977) · Zbl 0367.34033 [4] Conley, C., Isolated invariant sets and the Morse index, N.S.F., C.B.M.S., (Lecture Notes No. 38 (1978), Amer. Math. Soc: Amer. Math. Soc Providence, R. I) [6] Foias, C.; Temam, R., Structure of the set of stationary solutions of the Navier Stokes equations, Comm. Pure Appl. Math., 30, 149-164 (1977) · Zbl 0335.35077 [7] Foias, C.; Temam, R., Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa, 5, 29-63 (1978) · Zbl 0384.35047 [8] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0425.34048 [9] Hale, J. K., Ordinary Differential Equations (1969), McGraw-Hill: McGraw-Hill New York · Zbl 0186.40901 [10] Hale, J. K.; Massatt, R., Asymptotic Behavior of Gradient-Like Systems, (Univ. Fla. Symp. Dyn. Sys. II (1982), Academic Press: Academic Press New York) · Zbl 0542.34027 [11] Henry, D., Geometry theory of semilinear parabolic equation, (Lecture Notes in Mathematics No. 840 (1981), Springer-Verlag: Springer-Verlag New York/Berlin) [12] Mallet-Paret, J., Generic periodic solutions of functional differential equations, J. Differential Equations, 25, 163-183 (1977) · Zbl 0358.34078 [13] Matano, H., Convergence of solutions of one dimensional semilinear parabolic equations, J. Math. Kyoto Univ., 18, 221-227 (1978) · Zbl 0387.35008 [14] Smoller, J.; Tromba, A.; Wasserman, A., Nondegenerate solutions of boundary value problems, J. Nonlinear Anal., 4, 207-215 (1980) · Zbl 0429.34024 [16] Uhlenbeck, K., Eigenfunctions of Laplace operators, Bull. Amer. Math. Soc., 78, 1073-1076 (1972) · Zbl 0275.58003 [17] Uhlenbeck, K., Generic properties of eigenfunctions, Amer. J. Math., 98, 1059-1078 (1976) · Zbl 0355.58017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.