Generic properties of stationary state solutions of reaction-diffusion equations. (English) Zbl 0544.34019

The authors consider stationary solutions of the equation \(u''+f(u)=0,\) with homogeneous Dirichlet or Neumann boundary conditions. They prove that the ”time map” \(\eta \to T(\eta)\) is generically a Morse function. A simpler proof was also given by the reviewer and A. Wasserman [ibid. 52, 432-438 (1984; Zbl 0488.58015)].
Reviewer: J.Smoller


34B99 Boundary value problems for ordinary differential equations
37D15 Morse-Smale systems


Zbl 0488.58015
Full Text: DOI


[1] Abraham, R; Robbin, J, Transversal mappings and flows, (1967), Benjamin New York · Zbl 0171.44404
[2] Carr, J, Applications of centre manifold theory, () · Zbl 0464.58001
[3] Chow, S.N; Mallet-Paret, J, Integral averaging and bifurcation, J. differential equations, 26, 112-159, (1977) · Zbl 0367.34033
[4] Conley, C, Isolated invariant sets and the Morse index, N.S.F., C.B.M.S., ()
[5] {\scC. Conley and J. Smoller}, Remarks on the stability of steady-state solutions of reaction-diffusion equations, preprint. · Zbl 0458.76078
[6] Foias, C; Temam, R, Structure of the set of stationary solutions of the Navier Stokes equations, Comm. pure appl. math., 30, 149-164, (1977) · Zbl 0335.35077
[7] Foias, C; Temam, R, Remarques sur LES équations de Navier-Stokes stationnaires et LES phénomènes successifs de bifurcation, Ann. scuola norm. sup. Pisa, 5, 29-63, (1978) · Zbl 0384.35047
[8] Hale, J.K, Theory of functional differential equations, (1977), Springer-Verlag New York/Berlin · Zbl 0425.34048
[9] Hale, J.K, Ordinary differential equations, (1969), McGraw-Hill New York · Zbl 0186.40901
[10] Hale, J.K; Massatt, R, Asymptotic behavior of gradient-like systems, () · Zbl 0542.34027
[11] Henry, D, Geometry theory of semilinear parabolic equation, ()
[12] Mallet-Paret, J, Generic periodic solutions of functional differential equations, J. differential equations, 25, 163-183, (1977) · Zbl 0358.34078
[13] Matano, H, Convergence of solutions of one dimensional semilinear parabolic equations, J. math. Kyoto univ., 18, 221-227, (1978) · Zbl 0387.35008
[14] Smoller, J; Tromba, A; Wasserman, A, Nondegenerate solutions of boundary value problems, J. nonlinear anal., 4, 207-215, (1980) · Zbl 0429.34024
[15] {\scJ. Smoller and A. Wasserman}, Global bifurcation of steady-state solutions, preprint. · Zbl 0425.34028
[16] Uhlenbeck, K, Eigenfunctions of Laplace operators, Bull. amer. math. soc., 78, 1073-1076, (1972) · Zbl 0275.58003
[17] Uhlenbeck, K, Generic properties of eigenfunctions, Amer. J. math., 98, 1059-1078, (1976) · Zbl 0355.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.