Barbour, A. D.; Hall, Peter On the rate of Poisson convergence. (English) Zbl 0544.60029 Math. Proc. Camb. Philos. Soc. 95, 473-480 (1984). Let \(X_ 1,...,X_ n\) be independent Bernoulli random variables, and let \(p_ i=P[X_ i=1]\), \(\lambda =\sum^{n}_{i=1}p_ i\) and \(W=\sum^{n}_{i=1}X_ i\). Denote by \(d({\mathcal L}(W),P_{\lambda})\) the total variation distance between the distribution L(W) of W and a Poisson distribution \(P_{\lambda}\) with mean \(\lambda\). In this paper, using the Stein method, the authors obtain the following upper and lower bounds for \(d({\mathcal L}(W),P): (1/32)(1\wedge \lambda^{- 1})\sum^{n}_{j=1}p^ 2_ j\leq d({\mathcal L}(W),P_{\lambda})\leq \lambda^{-1}(1-e^{-\lambda})\sum^{n}_{j=1}p^ 2_ j.\) Reviewer: H.Takahata Cited in 2 ReviewsCited in 81 Documents MSC: 60F05 Central limit and other weak theorems 60E15 Inequalities; stochastic orderings Keywords:Bernoulli random variables; total variation distance; Stein method; upper and lower bounds PDF BibTeX XML Cite \textit{A. D. Barbour} and \textit{P. Hall}, Math. Proc. Camb. Philos. Soc. 95, 473--480 (1984; Zbl 0544.60029) Full Text: DOI References: [1] DOI: 10.1111/j.1467-9574.1969.tb00075.x · Zbl 0162.22203 · doi:10.1111/j.1467-9574.1969.tb00075.x [2] DOI: 10.1214/aop/1176996313 · Zbl 0321.60018 · doi:10.1214/aop/1176996313 [3] DOI: 10.1111/j.1467-9574.1977.tb00759.x · Zbl 0369.60025 · doi:10.1111/j.1467-9574.1977.tb00759.x [4] DOI: 10.2307/1426620 · Zbl 0511.60025 · doi:10.2307/1426620 [5] Cam, Pacific J. Math. 10 pp 1181– (1960) · Zbl 0118.33601 · doi:10.2140/pjm.1960.10.1181 [6] DOI: 10.1007/BF00533378 · Zbl 0123.35403 · doi:10.1007/BF00533378 [7] DOI: 10.1214/aop/1176996359 · Zbl 0335.60016 · doi:10.1214/aop/1176996359 [8] Prohorov, Uspekhi Mat. Nauk 8 pp 135– (1953) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.