Almost periodic Schrödinger operators: A review. (English) Zbl 0545.34023

From the author’s abstract: We review the recent rigorous literature on the one-dimensional Schrödinger equation. \(H=-d^ 2/dx^ 2+V(x)\) with V(x) almost periodic and the discrete \((=tight\) binding) analog, i.e., the doubly infinite Jacobi matrix, \(h_{ij}=\delta_{i,j+1}+\delta_{i,j-1}+V_ i\delta_{i,j}\) with \(V_ n\) almost periodic on the integers. Two themes dominate. The first is that the gaps in the spectrum tend to be dense, so that the spectrum is a Cantor set. We describe intuitions for this from the point of view of where gaps open, and from the point of view of anomalous long time behavior. We give a theorem of Avron and Simon, Chulaevsky, and Moser that for a generic sequence with \(\sum | a_ n|<\infty\), the continuum operator with \(V(x)=\sum a_ n\cos(x/2^ n)\) has a Cantor spectrum. The second theme involves unusual spectral types that tend to occur. We describe recurrent absolutely continuous spectrum, and show it occurs in some examples of the type just discussed. We give an intuition for dense point spectrum to occur, and some theorems on the occurrence of point spectrum. We sketch the proof of Avron and Simon, that for the discrete case with \(V_ n=\lambda \cos(2\pi \alpha n+\theta),\) if \(\lambda>2\) and \(\alpha\) is a Liouville number, then for a.e. \(\theta\),h has purely singular continuous spectrum.
Reviewer: H.Hochstadt


34L99 Ordinary differential operators
Full Text: DOI


[1] Avron, J.; Simon, B., J. Functional Anal., 43, 1 (1981)
[2] Avron, J.; Simon, B., Phys. Rev. Lett., 46, 1166 (1981)
[3] Avron, J.; Simon, B., Commun. Math. Phys., 82, 101 (1982)
[4] Avron, J.; Simon, B., Bull. Am. Math. Soc., 6, 81 (1982)
[5] J. Avron and B. Simon; J. Avron and B. Simon
[6] J. Bellisard and D. Testard; J. Bellisard and D. Testard
[7] J. Bellisard and D. Testard; J. Bellisard and D. Testard
[8] J. Bellisard, A. Formoso, R. Lima, and D. Testard; J. Bellisard, A. Formoso, R. Lima, and D. Testard
[9] V. ChulaevskyUsp. Math; V. ChulaevskyUsp. Math
[10] R. Johnson; R. Johnson
[11] Moser, J., Comm. Math. Helv., 56, 198 (1981)
[12] Johnson, R.; Moser, J., Commun. Math. Phys., 84, 403 (1982)
[13] Sarnak, P., Commun. Math. Phys., 84, 377 (1982)
[14] Phys. Rev. Lett., 43, 1954 (1979)
[15] Aubry, S., Solid State Sci., 8, 264 (1978)
[16] Andre, G.; Aubry, S., Ann. Israel Phys. Soc., 3, 133 (1980)
[17] Hofstader, D. R., Phys. Rev. B, 14, 2239 (1976)
[18] Sokolov, J., Phys. Rev. B, 23, 6422 (1981)
[19] Gordon, A. Ya., Usp. Math. Naut., 31, 257 (1976)
[20] Dinaburg, E. I.; Sinai, Ya., Func. Anal. i. Pril, 9, 4, 8 (1975)
[21] Russman, (Proc. New York Academy Sci. Nonlinear Conf. (1979))
[22] Benderskii, M.; Pasteur, L., Math. USSR Sb., 11, 245 (1970)
[23] Shubin, M., Trudy, Sem. Petrovskii, 3, 243 (1978)
[24] Pasteur, L., Usp. Mat. Nauk., 28, 3 (1973)
[25] Pasteur, L., Commun. Math. Phys., 75, 179 (1980)
[26] Kunz, H.; Soulliard, B., Commun. Math. Phys., 78, 201 (1980)
[27] W. Kirsch and F. Martinelli; W. Kirsch and F. Martinelli
[28] Goldshade, Ya.; Molchanov, S.; Pasteur, L., Func. Anal. i. Pril., 11, 1 (1977)
[29] McKean, H.; von Moerbeke, P., Invent. Math., 30, 217 (1975)
[30] Dobrovin, D.; Matveev, V.; Novikov, S., Russian Math Surveys, 31, 59 (1976)
[31] Simon, B., Ann. Inst. H. Poincare, A 24, 91 (1976)
[32] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, IV. Analysis of Operators (1978), Academic Press: Academic Press Princeton, N. J. · Zbl 0401.47001
[33] Eastham, M. S.P., The Spectral Theory of Periodic Differential Equations (1973), Scottish Academic Press: Scottish Academic Press New York · Zbl 0287.34016
[34] A. Yariv; A. Yariv
[35] McKean, H.; Trubowitz, E., Comm. Pure Appl. Math., 29, 143 (1976)
[36] J. Moser; J. Moser
[37] R. Johnson; R. Johnson
[38] Coburn, L.; Moyer, R.; Singer, I., Acta Math., 130, 279 (1973)
[39] Connes, A., Advances in Math., 39, 31 (1981)
[40] Pimsner, M.; Voiculescu, D., J. Operations Theory, 4, 201 (1980)
[41] Sacker, R.; Sell, G., J. Diff. Equations, 27, 320 (1978)
[42] Berezanski, J. M., Expansions in Eigenfunctions of Self-Adjoint Operators (1968), Amer. Math. Soc.
[43] B. SimonBull. Am. Math. Soc.; B. SimonBull. Am. Math. Soc.
[44] Schnol, I., Math. Sb., 42, 273 (1957)
[45] Simon, B., J. Functional Anal., 42, 347 (1981)
[46] Pearson, D., Commun. Math. Phys., 60, 13 (1978)
[47] Choquet, G., (Lectures in Analysis, Vol. 1 (1969), Benjamin: Benjamin Providence, R.I.)
[48] Thouless, D., J. Phys. C, 5, 77 (1972)
[49] Osceledec, W., Trudy Mosk. Mat. Obsc., 19, 679 (1968)
[50] Ruelle, D., Publ. I.H.E.S., 50, 275 (1979)
[51] J. Avron and B. Simon; J. Avron and B. Simon
[52] P. Deift; P. Deift
[53] M. Kac; M. Kac
[54] Thomas, L., Commun. Math. Phys., 33, 335 (1973)
[55] J. Bellisard, R. Lima, and P. TestardCommun. Math. Phys.; J. Bellisard, R. Lima, and P. TestardCommun. Math. Phys.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.