zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evolution equations with lack of convexity. (English) Zbl 0545.46029
Let $\Omega$ be an open subset of a real Hilbert space H, whose norm and scalar product are denoted by $\vert \cdot \vert$ and ($\cdot \vert \cdot)$. If $f:\quad \Omega \to {\bbfR}\cup \{+\infty \}$ is a function, set $$ \partial\sp-f(u)=\{\alpha \in H:\lim \quad \inf\sb{v\to u}\frac{f(v)-f(u)-(\alpha \vert v-u)}{\vert v-u\vert}\ge 0\},\quad if\quad f(u)<+\infty; $$ $$ \partial\sp-f(u)=\emptyset,\quad if\quad f(u)=+\infty. $$ If f is lower semicontinuous (with respect to the norm topology), f is said to have a $\phi$-monotone subdifferential, if there exists a continuous function $\phi:\quad \Omega \times {\bbfR}\sp 2\to {\bbfR}\sp+$ such that $$ (\alpha -\beta \vert u-v)\ge - [\phi(u,f(u),\vert \alpha \vert)+\phi(v,f(v),\vert \beta \vert)]\quad \vert u-v\vert\sp 2 $$ whenever $\partial\sp-f(u)\ne \emptyset$, $\partial\sp-f(v)\ne \emptyset$, $\alpha \in \partial\sp-f(u)$, $\beta \in \partial\sp-f(v)$. In this paper some general properties of this class of functions are studied and some theorems of existence, uniqueness, regularity and convergence, concerning the associated evolution equation $U'(t)\in -\partial\sp-f(U(t))$ are proved.

MSC:
46G05Derivatives, etc. (functional analysis)
46A50Compactness in topological linear spaces; angelic spaces, etc.
58D25Differential equations and evolution equations on spaces of mappings
49J27Optimal control problems in abstract spaces (existence)
WorldCat.org
Full Text: DOI
References:
[1] Aubin, J. P.: Mathematical methods of game and economic theory. (1979) · Zbl 0452.90093
[2] Brezis, H.: Opérateurs maximaux monotones. 50 (1973)
[3] Brøndsted, A.; Rockafellar, R. T.: On the subdifferentiability of convex functions. Proc. am. Math. soc. 16, 605-611 (1965) · Zbl 0141.11801
[4] Clarke, F. H.: Optimization and non-smooth analysis. (1983) · Zbl 0582.49001
[5] Crandall, M. G.; Liggett, T. M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265-298 (1971) · Zbl 0226.47038
[6] De Giorgi, E.: Generalized limits in calculus of variations. Topics in functional analysis (1980--81)
[7] De Giorgi, E.; Degiovanni, M.; Marino, A.; Tosques, M.: Evolution equations for a class of non-linear operators. Atti accad. Naz. lincei 75, 1-8 (1983) · Zbl 0597.47045
[8] De Giorgi, E.; Degiovanni, M.; Tosques, M.: Recenti sviluppi Della ${\Gamma}$-convergenza in problemi ellittici, parabolici ed iperbolici. Methods of functional analysis and theory of elliptic equations proc. Int. meeting dedicated to the memory of Professor Carlo miranda (1982)
[9] De Giorgi, E.; Marino, A.; Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti accad. Naz. lincei 68, 180-187 (1980) · Zbl 0465.47041
[10] De Giorgi, E.; Marino, A.; Tosques, M.: Funzioni (p, q)-convesse. Atti accad. Naz. lincei 73, 6-14 (1982) · Zbl 0521.49011
[11] Degiovanni, M.; Marino, A.; Tosques, M.: General properties of (p, q)-convex functions and (p, q)-monotone operators. Ric. mat. (Naples) 32, 285-319 (1983) · Zbl 0555.49007
[12] Degiovanni, M.; Marino, A.; Tosques, M.: Evolution equations associated with (p, q)-convex functions and (p, q)-monotone operators. Ric. mat. (Naples) 33, 81-112 (1984) · Zbl 0582.49005
[13] Degiovanni, M.; Marino, A.; Tosques, M.: Critical points and evolution equations. Multifunctions and integrals, lecture notes in mathematics 1091, 184-192 (1984)
[14] Edelstein, M.: On nearest points of sets in uniformly convex Banach spaces. J. lond. Math. soc. 43, 375-377 (1968) · Zbl 0183.40403
[15] Ekeland, I.: Nonconvex minimization problems. Bull. am. Math. soc. 1, 443-474 (1979) · Zbl 0441.49011
[16] Marino, A.; Scolozzi, D.: Geodetiche con ostacolo. Boll. un. Mat. ital. 2-B, 1-31 (1983)
[17] Marino, A.; Scolozzi, D.: Punti inferiormente stazionari ed equazioni di evoluzione con vincoli unilaterali non convessi. Rc. sem. Mat. fis. Milano 52, 393-414 (1982)
[18] Marino, A.; Scolozzi, D.: Autovalori dell’operatore di Laplace ed equazioni di evoluzione in presence di ostacolo. Problemi differentiali e teoria dei punti critici (1984)
[19] Marino, A.; Tosques, M.: Curves of maximal slope for a certain class of non regular functions. Boll. un. Mat. ital. 1-B, 143-170 (1982) · Zbl 0495.58012
[20] Marino A. & Tosques M., Existence and properties of the curves of maximal slope (to appear). · Zbl 0495.58012
[21] Pazy, A.: Semigroups of non-linear contraction in Hilbert space. Problems in non-linear analysis (1971) · Zbl 0225.54032
[22] Rockafellar, R. T.: Generalized directional derivatives and subgradients of non convex functions. Can. J. Math. 32, 257-280 (1980) · Zbl 0447.49009