×

zbMATH — the first resource for mathematics

On the representation of norm attaining positive operators on \(L^ p[0,1]\). (English) Zbl 0545.47018
Let \(1<r\leq p<\infty\). In this paper an integral representation of positive operators from the set \({\mathcal N}=\{T\in {\mathcal L}(L^ p[0,1],L^ r[0,1]):\quad there\quad exists\quad f\in L^ p[0,1]\quad such\quad that\quad \| Tf\| =\| f\| \| T\| \quad and\quad \sup p f=[0,1]\}\) is given. To obtain the above result Ryff’s representation theorem of doubly stochastic operators is used.
MSC:
47B38 Linear operators on function spaces (general)
PDF BibTeX XML Cite