×

Note on type II counter problem. (English) Zbl 0545.60094

The basic problem in the counter theory is to determine the distribution function of the distance between two successive registered particles if the distribution function of the primary process, distribution of impulses and the counter type are known. Our main aim in this note is to determine the joint Laplace transform of the above mentioned distribution, and the generating function of the number of particles arriving in the counting device during the dead time for the so called type II counter, and to make some remarks on the registrations of m types of particles (\(m\geq 1)\).

MSC:

60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
60E99 Distribution theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Л. Г. Афанасьева И. В. Михайлова: Предельное распределение периода занятости в системаX \(G /D /\infty\) n \(M /G /\infty\) в условиях большой загруски. в. кн. Материалы Всесоюзного симпозиума по статистике случайных процессов, изд. Киевского гос. ун-та, Киев (1973), 12-15.
[2] Л. Г. Афанасьева И. В. Михайлова: О восстановлениии характеристик некоторых систем массового обслуживания по выходящему потоку. в кн. Труды мат. фак. ВГУ, вып. 9, изд. Воронежского гос. ун-та, Воронеж (1973), 132-138. · Zbl 1221.53041
[3] Л. Г. Афанасьева И. В. Михайлова: О числе требований, обслуженных за период занятости. Изв. АН СССР, Тех. Кибернетика, (1978), 88-96. · Zbl 1234.93001
[4] G. E. Albert L. Nelson: Contribution to the statistical theory of counter data. Ann. Math. Stat., 24 (1953), 9-22. · Zbl 0050.13905
[5] R. Barlow: Applications of semi-Markov processes to counter problems. Studies in applied probability and management science, Stanford Univ. Press, Stanford, Calif., (1962), 34-62.
[6] M. Berman: The covariance of two type II counters. J. Appl. Probab., 18 (1981), 782-787. · Zbl 0467.60053
[7] А. Цвуреченский, др.: Об оценке плотности следов в трековых камерах. ОИЯИ, 5-81-362, Дубна (1981) 1-14. · Zbl 1167.00300
[8] А. Двуреченский, др.: О применении систем массового обслуживания с бесконечным числом каналов к некоторым задачам физике энергий. ОИЯИ, P 5-82-682 (1982). 1 - 4. · Zbl 1164.20358
[9] A. Dvurečenskij G. A. Ososkov: On a busy period of discretized \(GI /GI /\infty\) queue. JINR, E5-82-855, Dubna (1982).
[10] В. Феллер: Введение в теорию вероятностей и ее приложения. T. I., ,,Mnp”, Москва (1967). · Zbl 1103.35360
[11] В. И. Голъданский А. В. Куцешо, М И. Подгорецкий: Статистика отсчетов при регистрации ядерных частиц. ,Физматгиз”, Москва (1959). · Zbl 1234.81002
[12] R. L. Glückstern: Determination of bubble density. Nuclear. Instr. Meth. 45 (1966), 166-172.
[13] А. И. Маркушевич: Краткий курс теории аналитических функций. ,Hauka”, Москва (1978). · Zbl 1130.91322
[14] F. Pollaczek: Sur la théorie stochastique des compteurs électroniques. C. R. Acad. Sci. Paris, 238 (1954), 322-324. · Zbl 0055.12601
[15] R. Pyke: On renewal processes related to Type I and Type II counter models. Ann. Math. Stat., 29 (1958), 737-754. · Zbl 0086.33702
[16] R. Pyke: Markov renewal processes of zero order and their application to counter theory. Studies in Applied Probability and Management Science, Stanford Univ. Press, Stanford, Calif., (1962), 173-183. · Zbl 0116.36402
[17] G. Sankaranarayanan: Limit distributions in the theory of counters. Ann. Math. Stat., 32 (1961), 1271-1285. Correction, ibid 33 (1962), 1466. · Zbl 0111.33103
[18] G. Sankaranarayanan: Theory of particle counters. Math. Student, 32 (1964), 29-38.
[19] G. Sankaranarayanan C. Suyambulingom: Distribution of the maximum of the number of impulses at any instant in a type II counter in a given interval of time. Metrika, 18 (1971/72) 227-233. Correction, ibid 20 (1973), 245. · Zbl 0238.60090
[20] R. M. Sekkapan: A problem in type II counter. Calcutta Statis. Assoc. Bull., 15 (1966), 169-174. · Zbl 0266.60083
[21] W. L. Smith: Renewal theory and its ramifications. J. Roy. Stat. Soc. B, 20 (1958), 243 - 284. · Zbl 0091.30101
[22] L. Takács: On processes of happenings generated by means of a Poisson process. Acta. Math. Acad. Sci. Hungar., 6 (1955), 81-99. · Zbl 0067.11003
[23] L. Takács: On a probability problem arising in the theory of counters. Proc. Cambr. Phil. Soc., 52 (1956), 488-498. · Zbl 0075.29003
[24] L. Takács: On the sequence of events, selected by a counter from a recurrent process of events. Teor. Verojat. i. Prim. 1 (1956), 90-102. · Zbl 0073.13202
[25] L. Takács: On some probability problems concerning the theory of counters. Acta Math. Sci. Acad. Hungar., 8 (1957), 127-138. · Zbl 0078.32602
[26] L. Takács: On a probability problem in the theory of counters. Ann. Math. Stat., 29 (1958), 1257-1263.
[27] L. Takács: On a coincidence problem concerning particle counters. Ann. Math. Stat., 32 (1961), 739-756. · Zbl 0107.13103
[28] L. Takács: Introduction to the theory of queues. Oxford Univ. Prass 1962. · Zbl 0106.33502
[29] L. Takács: Queues with infinitely many servers. RAIRO Recherche Opérat., 14 (1980), 109-113. · Zbl 0428.60095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.