Cremona, J. E. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. (English) Zbl 0546.14027 Compos. Math. 51, 275-324 (1984). Let \(f\) be a newform of weight two and trivial character for \(\Gamma_ 0(N)\), with rational coefficients, then there is an elliptic curve over \(\mathbb Q\), quotient of the Jacobian variety of \(X_ 0(N)\), whose \(L\)-function is that of \(f\). Conversely, Weil has conjectured that every elliptic curve over \({\mathbb Q}\) is isogenous to such a curve. In the present paper it is investigated, mostly numerically the case of a complex quadratic field \(K\) as a base field instead of \(\mathbb Q\). If \(\mathfrak a\) is an ideal of \(K\) and \(\Gamma_ 0(\mathfrak a)\) the associated congruence subgroup of \(\mathrm{SL}(2,\mathfrak G_ K)\), then cusp forms on \(\Gamma_ 0({\mathfrak a})\) can be seen as dual to the space \(V(\mathfrak a)=H_ 1(\Gamma_ 0({\mathfrak a})\backslash X,\mathbb C)\) where \(X\) is the completion of the hyperbolic 3-space \(H_ 3\) by cusps; then \(V(\mathfrak a)\) can be computed via modular symbols, using a tessellation of \(H_ 3\) relative to \(\Gamma_ 0(\mathfrak a)\). In case \(K\) is euclidean, these tessellations are studied in §2 and a generator and relation description is given; the action of Hecke operator is also expressed (§3). This results in extensive tables (see also work of Grunewald, Elstrodt, Mennicke when \(\mathfrak a=\mathfrak p\) is a prime) giving much evidence for the existence of a correspondence between rational newforms in \(V({\mathfrak a})^+\) (where \(\pm\) means \(\pm 1\) eigenspace for \(\left( \begin{matrix} \varepsilon\\ 0\end{matrix} \begin{matrix} 0\\ 1\end{matrix} \right)\) where \(\varepsilon\) is a generator for roots of unity in \(K\)), and isogeny classes of elliptic curves defined over \(K\), but with no complex multiplication by \(K\). However, as remarked in a forthcoming paper of the author [“Abelian varieties with extra twists and cusp forms for imaginary quadratic fields”] rational newforms in \(V(\mathfrak a)^+\) not corresponding to elliptic curves can be obtained from two-dimensional abelian varieties over \(\mathbb Q\), not splitting over \(K\), and with extra twist by the quadratic character defining \(K\). The final §4 examines twisting by quadratic characters and its action on the decompositions \(V(\mathfrak a)=V(\mathfrak a)^+\otimes V(\mathfrak a)^-\). Reviewer: Guy Henniart (Orsay) Cited in 2 ReviewsCited in 44 Documents MSC: 14K15 Arithmetic ground fields for abelian varieties 11R11 Quadratic extensions 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 14G25 Global ground fields in algebraic geometry 11F11 Holomorphic modular forms of integral weight Keywords:modular symbols; hyperbolic tessellations; elliptic curve; complex quadratic field; twisting by quadratic characters PDFBibTeX XMLCite \textit{J. E. Cremona}, Compos. Math. 51, 275--324 (1984; Zbl 0546.14027) Full Text: Numdam EuDML Online Encyclopedia of Integer Sequences: a(n) = (6*n)!/((3*n)!*(2*n)!*n!). a(n) = binomial(3n,n)*CQC(n), where CQC(n) = A005721(n) = A005190(2n) is a central quadrinomial coefficient. References: [1] A.O.L. Atkin and J. Lehner : Hecke operators on \Gamma 0(m) . Math. Ann. 185 (1970) 134-160. · Zbl 0177.34901 · doi:10.1007/BF01359701 [2] A.F. Beardon : The geometry of discrete groups . In: Discrete Groups and Automorphic Functions , Academic Press, London 1977. [3] L. Bianchi : Sui Gruppi di Sostituzioni Lineari con Coefficienti appartenenti a Corpi quadratici immaginari . Math. Ann. 40 (1892) 332-412. · JFM 24.0188.02 [4] J.E. Cremona : Modular Symbols , Oxford D. Phil. Thesis 1981. [5] P. Gérardin and J.P. Labesse : Base change problem for GL(2) . In: Automorphic Forms, Representations and L-Functions , Proc. Symp. Pure Math. XXXIII(2), ed. A. Borel and W. Casselman. · Zbl 0412.10018 [6] F. Grunewald : personal communication , November 1981. [7] F. Grunewald , A.-C. Gushoff and J. Mennicke , Komplex - quadratische Zahlkörper kleiner Diskriminante und Pflasterungen des dreidimensionalen hyperbolischen Raumes , preprint. · Zbl 0488.51015 · doi:10.1007/BF00147309 [8] J. Elstrodt , F. Grunewald and J. Mennicke , On the group PSL2(Z[i]) . In: Lect. Notes 60, London Math. Soc. 1981. · Zbl 0541.10028 [9] F. Grunewald , H. Helling and J. Mennicke : SL2(D) over complex quadratic numberfields I . Algebra i Logica 17 (1978) 512-580. · Zbl 0483.10024 · doi:10.1007/BF01673825 [10] F. Grunewald and J. Mennicke : SL2(D) and Elliptic Curves . Preprint, Bielefeld 1978. [11] F. Grunewald and J. Schwermer : Arithmetic quotients of hyperbolic 3-space, cusp forms, and link complements . Duke Math. J. 48 (1981) 351-358. · Zbl 0485.57005 · doi:10.1215/S0012-7094-81-04820-1 [12] A. Hatcher : Hyperbolic Structures of Arithmetic type on some link complements . Preprint. · Zbl 0516.57001 · doi:10.1112/jlms/s2-27.2.345 [13] H. Jacquet and R.P. Langlands : Automorphic forms on GL(2) . Lect. Notes Math. 114, Berlin-Heidelberg -New York, 1970. · Zbl 0236.12010 · doi:10.1007/BFb0058988 [14] P.F. Kurčanov : Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms . Math. USSR Izv. 12 (1978) No. 3, 543-555. · Zbl 0414.10021 · doi:10.1070/IM1978v012n03ABEH002002 [15] J.I. Manin : Parabolic points and zeta functions of modular curves . Math. USSR Izv. 6 (1972) No. 1, 19-64. · Zbl 0248.14010 · doi:10.1070/IM1972v006n01ABEH001867 [16] T. Miyake : On automorphic forms on GL2 and Hecke operators . Ann. Math. 94 (1971) 174-189. · Zbl 0204.54201 · doi:10.2307/1970741 [17] R.J. Stroeker : Elliptic Curves defined over Imaginary Quadratic Fields , Amsterdam Doctoral Thesis 1975. · Zbl 0342.14014 [18] R.G. Swan : Generators and relations for certain special linear groups . Advances in Math. 6 (1971) 1-77. · Zbl 0221.20060 · doi:10.1016/0001-8708(71)90027-2 [19] J. Tate : Algorithm for determining the singular fiber in an elliptic pencil . In: Modular Functions of one Variable IV . Lect. Notes Math. 476 Berlin -Heidelberg-New York 1975. · Zbl 1214.14020 · doi:10.1007/BFb0097582 [20] J. Tate : The arithmetic of elliptic curves . Inv. Math. 23 (1974) 179-206. · Zbl 0296.14018 · doi:10.1007/BF01389745 [21] D.J. Tingley : Elliptic Curves uniformized by Modular Functions , Oxford D. Phil. Thesis 1975. [22] A. Weil : Über die Bestimmung Dirichletscher Reihen durch Functionalgleichungen . Math. Ann. 168 (1967) 149-156. · Zbl 0158.08601 · doi:10.1007/BF01361551 [23] A. Weil : Dirichlet series and automorphic forms . Lect. Notes Math. 189, Berlin- Heidelberg-New York 1971. · Zbl 0218.10046 · doi:10.1007/BFb0061201 [24] A. Weil : Zeta functions and Mellin transforms . Colloquium on Algebraic Geometry, Bombay 1968, 409-426. · Zbl 0193.49104 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.