Dooley, A. H.; Rice, J. W. On contractions of semisimple Lie groups. (English) Zbl 0546.22017 Trans. Am. Math. Soc. 289, 185-202 (1985). Let (G,K) be a Riemannian symmetric pair of the compact or noncompact type and let \(V\rtimes K\) be the associated Cartan motion group. This article shows how to obtain the representations of \(V\rtimes K\) from the representations of G, using the fact that \(V\rtimes K\) is a contraction of G. The results obtained generalize to an arbitrary matrix coefficient the classical Mehler-Heine formula. Cited in 2 ReviewsCited in 24 Documents MSC: 22E46 Semisimple Lie groups and their representations 57S99 Topological transformation groups Keywords:Riemannian symmetric pair; Cartan motion group; representations; Mehler- Heine formula PDFBibTeX XMLCite \textit{A. H. Dooley} and \textit{J. W. Rice}, Trans. Am. Math. Soc. 289, 185--202 (1985; Zbl 0546.22017) Full Text: DOI References: [1] Michael Atiyah and Wilfried Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1 – 62. · Zbl 0373.22001 · doi:10.1007/BF01389783 [2] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255 – 354. · Zbl 0233.22005 · doi:10.1007/BF01389744 [3] E. Cartan, Sur la détermination d’un système orthogonal complet dans un espace de Riemann symmetrique clos., Rend. Circ. Math. Palermo 53 (1929), 217-252. · JFM 55.1029.01 [4] Jean Louis Clerc, Une formule asymptotique du type Mehler-Heine pour les zonoles d’un espace riemannien symétrique, Studia Math. 57 (1976), no. 1, 27 – 32 (French). · Zbl 0335.43010 [5] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 509 – 517. · Zbl 0532.22014 · doi:10.1017/S030500410000089X [6] R. Gilmore, Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974. · Zbl 0279.22001 [7] Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977. Mathematical Surveys, No. 14. · Zbl 0364.53011 [8] Henryk Hecht and Wilfried Schmid, A proof of Blattner’s conjecture, Invent. Math. 31 (1975), no. 2, 129 – 154. · Zbl 0319.22012 · doi:10.1007/BF01404112 [9] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. [10] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0451.53038 [11] Sigurdur Helgason, A duality for symmetric spaces with applications to group representations. III. Tangent space analysis, Adv. in Math. 36 (1980), no. 3, 297 – 323. · Zbl 0441.53040 · doi:10.1016/0001-8708(80)90019-5 [12] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. · Zbl 0447.17001 [13] E. Inonu and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 510 – 524. · Zbl 0050.02601 [14] Adam Kleppner and Ronald L. Lipsman, The Plancherel formula for group extensions. I, II, Ann. Sci. École Norm. Sup. (4) 5 (1972), 459 – 516; ibid. (4) 6 (1973), 103 – 132. · Zbl 0239.43003 [15] Michel Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 167 – 210 (French). · Zbl 0452.43011 [16] Monique Lévy-Nahas, Deformation and contraction of Lie algebras, J. Mathematical Phys. 8 (1967), 1211 – 1222. · Zbl 0175.24803 · doi:10.1063/1.1705338 [17] Ronald L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures Appl. (9) 59 (1980), no. 3, 337 – 374. · Zbl 0421.22005 [18] George W. Mackey, On the analogy between semisimple Lie groups and certain related semi-direct product groups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 339 – 363. [19] George W. Mackey, Induced representations of groups and quantum mechanics, W. A. Benjamin, Inc., New York-Amsterdam; Editore Boringhieri, Turin, 1968. · Zbl 0174.28101 [20] N. Mukunda, Expansions of Lie groups and representations of \?\?(3,\?), J. Mathematical Phys. 10 (1969), 897 – 911. · Zbl 0181.28302 · doi:10.1063/1.1664919 [21] Albert Nijenhuis and R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175 – 179. · Zbl 0153.04402 [22] Eugene J. Saletan, Contraction of Lie groups, J. Mathematical Phys. 2 (1961), 1 – 21. · Zbl 0098.25804 · doi:10.1063/1.1724208 [23] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. · Zbl 0265.22020 [24] Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 19. · Zbl 0265.22022 [25] Joseph A. Wolf, Orbit method and nondegenerate series, Hiroshima Math. J. 4 (1974), 619 – 628. · Zbl 0318.22019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.