×

Self-duality of Kähler surfaces. (English) Zbl 0546.53044

The notion of self-duality of an oriented Riemannian 4-manifold is the differential geometric condition that makes the Penrose twistor space construction work. The author here considers when a Kähler metric is self-dual (with respect to either orientation). With respect to the natural orientation the manifold is locally symmetric. This was proved by J. P. Bourguignon [Invent. Math. 63, 263-286 (1981; Zbl 0456.53033)], B.-Y. Chen [J. Differ. Geom. 13, 547-558 (1978; Zbl 0427.53033)] and A. Derdzinski [Compos. Math. 49, 405-433 (1983; Zbl 0527.53030)] and also by the author’s own approach. With the other orientation, this paper contains the theorem that a Kähler surface is anti-self-dual if and only if its scalar curvature is zero. Furthermore, a classification may be given, the only unknown metrics being those defined on rational surfaces with \((c_ 1)^ 2\leq 0\). It remains an intriguing possibility whether these metrics really exist.
Reviewer: N.Hitchin

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] M.F. Atiyah , N.J. Hitchin and I.M. Singer : Self-duality in four-dimensional Riemannian geometry . Proc. R. Soc. Lond. A. 362 (1978) 425-461. · Zbl 0389.53011
[2] J.P. Bourguignon : Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein . Invent. Math. 63 (1981) 263-286. · Zbl 0456.53033
[3] B.-Y. Chen : Some topological obstructions to Bochner-Kaehler metrics and their applications . Jour. Dif. Geom. 13 (1978) 547-558. · Zbl 0354.53049
[4] A. Derdzinski : Exemples de métriques de Kähler et d’Einstein auto-duales sur le plan complexe . In: Geometrie riemannienne en dimension 4. Seminaire Arthur Besse 1978/79 , Cedic/Fernand Nathan, Paris (1981). · Zbl 0477.53025
[5] A. Derdzinski : Self-dual Kähler manifolds and Einstein manifolds of dimension four . Comp. Math. 49 (405-433) 1983. · Zbl 0527.53030
[6] L.P. Eisenhart : Riemannian Geometry . Princeton (1964).
[7] S. Helgason : Differential Geometry, Lie Groups, and Symmetric Spaces . Academic Press (1978). · Zbl 0451.53038
[8] N.J. Hitchin : Kählerian twistor spaces . Proc. Lond. Math. Soc. 43 (1981) 133-150. · Zbl 0474.14024
[9] M. Itoh : On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces . Publ. Res. Inst. Math. Sci. 19 (1983) 15-32. · Zbl 0536.53065
[10] S. Kobayashi and K. Nomizu : Foundations of differential geometry, II . Interscience Publishers (1969). · Zbl 0175.48504
[11] K. Kodaira : On the structure of complex analysic surfaces , IV. Amer. J. Math. 90 (1968) 1048-1066. · Zbl 0193.37702
[12] K. Kodaira and J. Morrow : Complex Manifolds . Holt, Rinehart and Winston (1971). · Zbl 0325.32001
[13] F. Tricerri and L. Vanhecke : Curvature tensors on almost Hermitian manifolds . Transact. A.M.S. 267 (1981) 365-398. · Zbl 0484.53014
[14] K. Yano and S. Bochner : Curvature and Betti numbers . Ann. Math. Studies 32, Princeton (1953). · Zbl 0051.39402
[15] S.-T. Yau : On the curvature of compact Hermitian manifolds . Invent. Math. 25 (1974) 213-239. · Zbl 0299.53039
[16] S.-T. Yau : Seminar on differential geometry . Ann. Math. Studies 102, Princeton (1982). · Zbl 0479.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.