zbMATH — the first resource for mathematics

Expectation and variance of the volume covered by a large number of independent random sets. (English) Zbl 0546.60015
Let \(A\subset {\mathbb{R}}^ m\) be a bounded and measurable set and let \(u_ 1,u_ 2,...\in {\mathbb{R}}^ m\) be a sequence of i.i.d. random vectors with common probability density \(p(u)=f(\| u\|)\). Let N be either a nonrandom positive integer or a Poisson random variable with parameter \(\lambda\). The volume covered by at least (exactly) k of the random sets \(A+u_ i\), \(i=1,...,N\), is denoted by \(V_ k (W_ k)\). In this paper, the asymptotic behaviour of the expectations \(EV_ k\), \(EW_ k\) and variances \(\sigma^ 2(V_ 1)\), as \(\lambda \to\infty \) or \(N\to\infty \), is studied for three types of densities p.
The results are far-reaching generalizations of formulas of P. A. P. Moran, Acta Math. 133(1974), 273-286 (1975; Zbl 0297.60011).
Reviewer: W.Weil

60D05 Geometric probability and stochastic geometry
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
Full Text: Numdam EuDML
[1] L. De Haan : On regular variation and its application to the weak convergence of sample extremes . Mathematical Centre Tracts 32. Amsterdam: Mathematisch Centrum, 1970. · Zbl 0226.60039
[2] M.P. D : Differential Geometry of Curves and Surfaces . Englewood Cliffs, New Jersey: Prentice Hall, 1976. · Zbl 0326.53001
[3] W. Feller : An Introduction to Probability Theory and its Applications , Vol. II, 2nd edn. New York: Wiley, 1971. · Zbl 0039.13201
[4] W. Gröbner and N. Hofreiter : Integral-Tafel, Zweiter Teil: bestimmte Integrale . Wien 1950.
[5] H. Hadwiger : Altes und Neues über konvexe Körper . Basel und Stuttgart: Birkhäuser Verlag, 1955. · Zbl 0064.16503
[6] P.A.P. Moran : The volume occupied by normally distributed spheres . Acta Math. 133 (1974) 273-286. · Zbl 0297.60011 · doi:10.1007/BF02392147
[7] E. Seneta : Regularly Varying Functions . Lecture Notes in Mathematics 508. Berlin: Springer Verlag, 1976. · Zbl 0324.26002 · doi:10.1007/BFb0079658
[8] A.J. Stam : The variance of the volume covered by a large number of rectangles with normally distributed centers. Report T. W. 218, Mathematisch Instituut Rijksuniversiteit Groningen.
[9] A.J. Stam : The volume covered by a large number of random sets: examples. Report T. W.-245, Mathematisch Instituut Rijksuniversiteit, Groningen. · Zbl 0546.60015
[10] F.A. Valentine : Konvexe Mengen . Mannheim: Bibliographisches Institut, 1968. · Zbl 0157.52501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.