×

zbMATH — the first resource for mathematics

The bidimensional Stefan problem with convection: The time dependent case. (English) Zbl 0547.35117
This paper considers the time dependent Stefan problem with convection in the fluid phase governed by the Stokes equation, and with adherence of the fluid on the lateral boundaries. Let \(\Omega\) be a bounded daomain in \(R^ 2\) with smooth boundary. The two phase Stefan problem is studied on the region \(\Omega \times (0,T)\), \(T>0\). The existence of a weak solution is obtained via the introduction of a temperature dependent penalty term in the fluid flow equation, together with the application of various compactness arguments.
Reviewer: M.Ullrich

MSC:
35R35 Free boundary problems for PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. L. Bona and E. DiBenedetto, A remark on the interior regularity of weak solutions of Navier Stokes equations in dimension two (to appear).
[2] Cannon J. R., J. Differential Equation 20 pp 441– (1976) · Zbl 0339.35050 · doi:10.1016/0022-0396(76)90118-2
[3] Cannon J. R., Math. Res. pp 35– (1979)
[4] Cannon J. R., SIAM J. of Math. Analysis 1 (4) pp 632– (1980) · Zbl 0459.35090 · doi:10.1137/0511058
[5] Cannon J. R., Arch. for Rat. Mech. and Analysis 73 (4) pp 79– (1980) · Zbl 0436.76056 · doi:10.1007/BF00283258
[6] Cannon J. R., Free Boundary Problems (4) pp 231– (1980)
[7] DiBenedetto E., Annali di Mat. Pura ed Applicata 130 (4) pp 131– (1982) · Zbl 0503.35018 · doi:10.1007/BF01761493
[8] E. DiBenedetto, Continuity of weak-solutions to a general porous media equation. MRC Technical Summary Report 2189 (to appear in Indiana Univ. Math. Journal). · Zbl 0526.35042
[9] Heywood J. G., Fluid Dynamics Transactions 10 (4) (1982)
[10] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow · Zbl 0184.52603 · doi:10.1063/1.3051412
[11] Ladyzhenskaya O. A., Amer. Math. Soc. Transl. Math. Mono 23 (1968)
[12] Friedman A., Trans. Amer. Math. Soc. 132 pp 51– (1968) · doi:10.1090/S0002-9947-1968-0227625-7
[13] Courant R., Methods of Mathematical Physics · JFM 57.0245.01 · doi:10.1119/1.1933702
[14] Lions J. L., Nonhomogeneous Boundary Value Problems and Applications (1972)
[15] Boussinesq J., Thèorie analytique de la chaleur (1903)
[16] Aronson D. G., Arch. Rat. Mech. Anal. 25 pp 81– (1967) · Zbl 0154.12001 · doi:10.1007/BF00281291
[17] Moser J., Comm. Pure and Applied Math pp 101– (1964) · Zbl 0149.06902 · doi:10.1002/cpa.3160170106
[18] Serrin J., Arch. Rat. Mech. Anal. 9 pp 187– (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[19] Serrin J., Nonlinear problems (1963)
[20] Stein E., Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[21] Teman R., Navier Stokes Equations (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.