×

zbMATH — the first resource for mathematics

On a class of high resolution total-variational-stable finite-difference schemes (with appendix by Peter D. Lax). (English) Zbl 0547.65062
For the numerical solution of hyperbolic conservation laws \((*)\quad u_ t+f(u)_ x=0,\quad u(.,0)=u_ 0\) the author considers numerical schemes of type \(Lv^{n+1}=Rv^ n,\quad t=n\tau\) where L and R are centered finite-difference operators. It is well known [cf. the author and P. D. Lax, ibid. 18, 289-315 (1981; Zbl 0467.65038)] that for bounded initial data with bounded total variation explicit consistent schemes satisfying an entropy inequality converge in \(L^ 1_{loc}\) to the (unique) entropy solution of (*) if the schemes are total-variation stable. First, the author shows that this result also holds true in the implicit case assuming periodicity of initial data. Then, for scalar conservation laws he considers finite-difference operators of the form \((Lv)_ j=v_ j+\eta\lambda (\bar f_{j+1/2}-\bar f_{j-1/2}),\quad (Rv)_ j=v_ j-(1-\eta)\lambda (\bar f_{j+1/2}-\bar f_{j- 1/2}),\quad j=xh,\quad\lambda =\tau /h,\quad 0\leq\eta \leq 1,\) with Lipschitz continuous numerical flux given by \(\bar f_{j+1/2}=(f_ j+f_{j+1})/2-q(v_ j,v_{j+1})(v_{j+1}-v_ j)/(2\lambda)\) (q some bounded function), and he proves that the associated scheme is total- variation diminishing (TVD) under a Courant-Friedrichs-Lewy (CFL) type condition. The basic idea is to modify these first order schemes in such a way that they become order ones while preserving the TVD property. This can be done by introducing a new flux \(f+(1/\lambda)g\) with appropriately chosen g. It is shown that the resulting highly nonlinear schemes are consistent and thus possess a subsequence converging to a weak solution of (*). There is numerical evidence that they also satisfy the entropy inequality although so far a rigorous proof for that doesn’t exist. The second order schemes can be extended to systems of conservation laws and it is proved that in the constant coefficient case and under a CFL- condition they are TVD and convergent. The author also shows how to apply the newly developed schemes to steady-state calculations, and in an appendix P. Lax provides a general criterion for a linear difference operator to be TVD.
Reviewer: R.H.W.Hoppe

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76L05 Shock waves and blast waves in fluid mechanics
35L67 Shocks and singularities for hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI