×

Bounded starlike functions of complex order. (English) Zbl 0548.30004

Suppose that \(M>{1\over2}\) and \(b\neq 0\), and denote by F(b,M) the class of analytic functions f(z) subject to the conditions \[ (i)\quad f(z)/z\neq 0,\quad (ii)\quad| b-1+zf'(z)(f(z))^{-1}-bM| <| bM| \] in the unit disk. Using standard techniques the authors obtain some coefficient bounds and the radius of starlikeness of the class F(b,M).
Reviewer: E.Złotkiewicz

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI

References:

[1] Clunie, J., J. London Math. Soc., 34, 215-215 (1959) · Zbl 0087.07704 · doi:10.1112/jlms/s1-34.2.215
[2] Keogh, F. R.; Merkes, E. P., Proc. Am. Math. Soc., 20, 8-8 (1969) · Zbl 0165.09102 · doi:10.2307/2035949
[3] Kulshrestha, P. K., Proc. R. Irish Acad., 73, 1-1 (1973) · Zbl 0248.30005
[4] Kulshrestha, P. K., Rend. Math., 9, 137-137 (1976) · Zbl 0328.30012
[5] Libera, R. J., Can. J. Math., 19, 449-449 (1967) · Zbl 0181.08104
[6] Libera, R. J.; Ziegler, M. R., Trans. Am. Math. Soc., 166, 361-361 (1972) · Zbl 0245.30009 · doi:10.2307/1996055
[7] Nasr A M and Aouf K MStarlike functions of complex order (submitted)
[8] Singh, R., J. Indian Math. Soc., 32, 208-208 (1968)
[9] Singh, R.; Singh, V., Indian J. Pure Appl. Math., 5, 733-733 (1974) · Zbl 0346.30011
[10] Špácěk, L., Casopis Pest. Math. Fys., 62, 12-12 (1933)
[11] Zamorski, J., Ann. Polon. Math., 9, 265-265 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.