Laedke, E. W.; Spatschek, K. H.; Stenflo, L. Evolution theorem for a class of perturbed envelope soliton solutions. (English) Zbl 0548.35101 J. Math. Phys. 24, 2764-2769 (1983). Summary: Envelope soliton solutions of a class of generalized nonlinear Schrödinger equations are investigated. If the quasiparticle number N is conserved, the evolution of solitons in the presence of perturbations can be discussed in terms of the functional behavior of \(N(\eta^ 2)\), where \(\eta^ 2\) is the nonlinear frequency shift. For \(\partial_{\eta^ 2}N>0\), the system is stable in the sense of Lyapunov, whereas, in the opposite region, instability occurs. The theorem is applied to various types of envelope solitons such as spikons, relations, and others. Cited in 145 Documents MSC: 35Q99 Partial differential equations of mathematical physics and other areas of application 35J10 Schrödinger operator, Schrödinger equation 35B35 Stability in context of PDEs Keywords:Lyapunov stability; Envelope soliton solutions; nonlinear Schrödinger equations; quasiparticle number PDF BibTeX XML Cite \textit{E. W. Laedke} et al., J. Math. Phys. 24, 2764--2769 (1983; Zbl 0548.35101) Full Text: DOI OpenURL References: [1] DOI: 10.1016/0378-4363(76)90273-4 [2] Zakharov V. E., Zh. Eksp. Teor. Fiz. 62 pp 1745– (1972) [3] Zakharov V. E., Sov. Phys. JETP 35 pp 908– (1972) [4] DOI: 10.1098/rspa.1972.0074 [5] DOI: 10.1103/PhysRevD.13.2739 [6] DOI: 10.1016/0370-1573(78)90074-1 [7] DOI: 10.1016/0167-2789(82)90019-7 [8] Kolokolov A. A., Izv. Vyssh. Uchebn. Zaved. Radiofiz. 17 pp 1332– (1974) [9] DOI: 10.1063/1.861553 [10] DOI: 10.1088/0032-1028/19/9/008 [11] DOI: 10.1016/0375-9601(77)90432-7 [12] Litvak A. G., Pis’ma Zh. Eksp. Teor. Fiz. 27 pp 549– (1978) [13] Litvak A. G., JETP Lett. 27 pp 517– (1978) [14] DOI: 10.1103/PhysRevA.18.1591 [15] DOI: 10.1016/0375-9601(78)90395-X [16] DOI: 10.1007/BF00639526 [17] DOI: 10.1016/0375-9601(79)90771-0 [18] DOI: 10.1063/1.523737 · Zbl 0383.35015 [19] Berezhiani V. I., Sov. J. Plasma Phys. 7 pp 365– (1981) [20] DOI: 10.1063/1.863836 · Zbl 0495.76108 [21] DOI: 10.1063/1.525370 [22] DOI: 10.1017/S0022377800000428 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.