zbMATH — the first resource for mathematics

Existence of maximal surfaces in asymptotically flat spacetimes. (English) Zbl 0548.53054
Two a priori estimates are used to prove a number of theorems about the existence of prescribed mean curvature surfaces in Lorentzian manifolds. In particular, it is shown that an asymptotically flat spacetime with slowly expanding interior admits maximal surfaces. The methods can be generalized to include spacetimes with moving interior (”boost” problem) and interiors consisting of several systems in relative motion.

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
35J60 Nonlinear elliptic equations
Full Text: DOI
[1] Avez, A.: Essais de géométrie Riemannienne hyperbolique globale ? applications a la relativité générale. Ann. Inst. Fourier (Grenoble)13, 105-190 (1965)
[2] Bartnik, R.: Existence theorems for maximal surfaces, Thesis, Princeton 1983
[3] Bancel, D.: Sur le problème de Plateau dans un variété Lorentzienne, C.R. Acad. Sci. Paris268 A, 403-404 (1978) · Zbl 0381.49012
[4] Brill, D.: On spacetimes without maximal surfaces. In: Proc. Third Marcel Grossman Meeting on General Relativity. Beijing 1982
[5] Brill, D., Flaherty, F.: Isolated maximal surfaces in spacetime. Commun. Math. Phys.50, 157-165 (1976) · Zbl 0337.53051 · doi:10.1007/BF01617993
[6] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys.87, 131-152 (1982) · Zbl 0512.53055 · doi:10.1007/BF01211061
[7] Calabi, E.: Examples of Bernstein problems for some non-linear equations. AMS Symposium on Global Analysis, Berkeley 1968 · Zbl 0169.53303
[8] Cheng, S.-Y., Yau, S.-T.: Maximal spacelike surfaces in Lorentz-Minkowski spaces. Ann. Math.104, 407-419 (1976) · Zbl 0352.53021 · doi:10.2307/1970963
[9] Choquet-Bruhat, Y.: Maximal submanifolds with constant mean extrinsic curvature of a Lorentzian manifold. Ann. d. Scuda Norm. Sup. Pisa3, 361-376 (1976) · Zbl 0332.53035
[10] Choquet-Bruhat, Y., York, J.: The Cauchy Problem. In:General Relativity and Gravitation A. Held, (ed.), New York: Plenum Press 1980
[11] Eardley, D., Smarr, L.: Time functions in numerical relativity: Marginally bound dust collapse. Phys. Rev. D19, 2239-2259 (1979) · doi:10.1103/PhysRevD.19.2239
[12] Fischer, A., Marsden, J., Moncrief, V.: The structure of the space of solutions of Einstein’s equations. I. One Killing field. Ann. Inst. H. Poincare33, 147-194 (1980) · Zbl 0454.53044
[13] Flaherty, F.: The boundary value for maximal hypersurfaces. P.N.A.S. USA76, 4765-4767 (1979) · Zbl 0428.49031 · doi:10.1073/pnas.76.10.4765
[14] Gerhardt, C.:H-surfaces in Lorentzian manifolds. Commun. Math. Phys.89, 523-553 (1983) · Zbl 0519.53056 · doi:10.1007/BF01214742
[15] Goddard, A.: A generalisation of the concept of constant mean curvature and canonical time. Gen. Rel. Grav.8, 525-537 (1977) · Zbl 0421.53045 · doi:10.1007/BF00762636
[16] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0361.35003
[17] Hawking, S., Ellis, G.: The large-scale structure of spacetime. Cambridge: Cambridge University Press 1973 · Zbl 0265.53054
[18] Lloyd, N.G.: Topological degree theory. Cambridge: Cambridge University Press 1978 · Zbl 0367.47001
[19] Marsden, J., Tipler, F.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep.66, 109-139 (1980) · doi:10.1016/0370-1573(80)90154-4
[20] Piran, T.: Problems and solutions in numerical relativity. Ann. NY Acad.375, 1-14 (1981) · doi:10.1111/j.1749-6632.1981.tb33686.x
[21] Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. I. Commun. Math. Phys.65, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[22] Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys.79, 231-260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[23] Simon, L.: Second variation in geometry and topology. Melbourne University Preprint (1979)
[24] Stumbles, S.: Hypersurfaces of constant mean extrinsic curvature. Ann. Phys.133, 28-56 (1980) · Zbl 0472.53063
[25] Treibergs, A.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math.66, 39-56 (1982) · Zbl 0483.53055 · doi:10.1007/BF01404755
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.