zbMATH — the first resource for mathematics

The rank of regular Morse dynamical systems. (English) Zbl 0549.28026
If \(x=b\cdot^{0}\times b\cdot^{1}\times..\). is a regular Morse sequence and \(\sup| b^ i| <+\infty\), then x has rank 2. There are regular Morse shifts with rank one. If x is a Kakutani sequence, then x has rank one iff x is not regular. If \(\Theta\) is a nonperiodic substitution of constant length on two symbols, then \(\Theta\) is of rank 2 iff \(\Theta\) is a continuous substitution. Every Morse sequence has a simple spectrum.

28D10 One-parameter continuous families of measure-preserving transformations
37A99 Ergodic theory
Full Text: DOI
[1] Baxter, J.R.: A class of ergodic transformations having simple spectrum. Proc. Am. Math. Soc. 24, 275–279 (1970) · Zbl 0206.06404
[2] Dekking, F.M.: The spectrum of dynamical system arising from substitutions of constant length. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 41, 221–239 (1978) · Zbl 0348.54034 · doi:10.1007/BF00534241
[3] Junco, A.: Transformations with discrete spectrum are stacking transformations. Can. J. Math. XXVIII, 836–839 (1976) · Zbl 0336.47002 · doi:10.4153/CJM-1976-080-3
[4] Junco, A.: A transformation with simple spectrum which is not rank one. Can. J. Math. XXIX, 655–663 (1977) · Zbl 0343.28009 · doi:10.4153/CJM-1977-067-7
[5] Keane, M.: Generalized Morse sequences. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 10, 335–353 (1968) · Zbl 0162.07201 · doi:10.1007/BF00531855
[6] Kwiatkowski, J.: Isomorphism of regular Morse dynamical systems. Stud. Math. LXXII, 59–89 (1982) · Zbl 0525.28018
[7] Kwiatkowski, J.: Spectral isomorphism of Morse dynamical systems. Bull. Acad. Pol. Sci. Ser. Sci. Math. XXIX, 105–114 (1981) · Zbl 0496.28019
[8] Nürnberg, R.: All generalized Morse sequences are loosely Bernoulli. Math. Z. 182, 403–407 (1983) · Zbl 0501.28011 · doi:10.1007/BF01179759
[9] Ornstein, D.: Ergodic theory, randomness and dynamical systems. Yale Univ. Press 1974 · Zbl 0296.28016
[10] Ornstein, D., Rudolph, D., Weiss, B.: Equivalence of measure preserving transformations. Mem. Am. Math. Soc. 37, 262 (1982) · Zbl 0504.28019
[11] Weiss, B.: Equivalence of measure preserving transformations. Lecture Notes, Institute for Advanced Studies, Hebrew Univ. of Jerusalem 1976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.