×

zbMATH — the first resource for mathematics

La série discrète de \(SL(2,{\mathbb{R}})\) et les opérateurs pseudo- différentiels sur une demi-droite. (French) Zbl 0549.35119
The paper describes a symbolic calculus for operators acting on functions defined on a half-lime. The calculus is covariant under a certain representation of \(SL(2,{\mathbb{R}})\) taken from the (projective) discrete series of this group, in exactly the same way that the standard Weyl calculus of pseudodifferential operators is covariant under the metaplectic representations: this requires that the Poincaré half-plane be used as a phase space (the space where symbols live). A few formulas, some possibly new, on the Laplace-Beltrami operator of the half-plane, arise in a natural way in this context.

MSC:
35S05 Pseudodifferential operators as generalizations of partial differential operators
43A85 Harmonic analysis on homogeneous spaces
58J40 Pseudodifferential and Fourier integral operators on manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds
47Gxx Integral, integro-differential, and pseudodifferential operators
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] F. A. BEREZIN , Quantization (Izv. Akad. Nauk S.S.S.R., vol. 38, n^\circ 5, 1974 ; Math. U.S.S.R. Izvestija, vol. 8, n^\circ 5, 1974 , p. 1109-1165). MR 52 #16404 | Zbl 0312.53049 · Zbl 0312.53049
[2] F. A. BEREZIN , Quantization in Complex Symmetric spaces (Izv. Akad. Nauk S.S.S.R., vol. 39, n^\circ 2, 1975 ; Math. U.S.S.R. Izvestija, vol. 9, n^\circ 2, 1975 , p. 341-379). MR 58 #22691 | Zbl 0324.53049 · Zbl 0324.53049
[3] N. N. BOGOLIUBOV , A. A. LOGUNOV , I. T. TODOROV , Introduction to axiomatic quantum field theory , Benjamin inc., 1975 , Reading (Mass, U.S.A.). · Zbl 1114.81300
[4] R. CARROLL , Some remarks on singular pseudo-differential operators (Comm. in P.D.E., vol. 6, n^\circ 12, 1981 , p. 1407-1428). MR 83a:35106 | Zbl 0483.35083 · Zbl 0483.35083
[5] P. EYMARD , Le noyau de Poisson et l’analyse harmonique non euclidoenne . Conférences à l’Istituto Matematico Politecnico de Turin (Italie), 1982 .
[6] P. C. GREINER , On the Laguerre calculus of left-invariant convolution pseudo-differential operators on the Heisenberg group , Séminaire Goulaouic-Meyer-Schwartz, 1980 - 1981 , exposé 11, École Polytechnique. Numdam | Zbl 0476.58024 · Zbl 0476.58024
[7] S. LANG , SL(2, \Bbb R) , Addison-Wesley, 1975 . MR 55 #3170
[8] W. MAGNUS , F. OBERHETTINGER , R. P. SONI , Formulas and theorems for the special functions of Mathematical physics , 3e édition, Springer-Verlag, 1966 . MR 38 #1291 | Zbl 0143.08502 · Zbl 0143.08502
[9] L. PUKANSZKY , The Plancherel formula for the universal covering group of SL(2, \Bbb R) (Math. Ann., vol. 156, 1964 , p. 96-143). MR 30 #1215 | Zbl 0171.33903 · Zbl 0171.33903
[10] M. REED , B. SIMON , Methods of modern mathematical physics , vol. 1, Ac. Press, 1972 , New York. MR 58 #12429a | Zbl 0242.46001 · Zbl 0242.46001
[11] R. TAKAHASHI , SL(2, \Bbb R), École d’Été ”Analyse harmonique” , Université de Nancy I, 1980 .
[12] A. UNTERBERGER , Les opérateurs métadifférentiels (Lecture Notes in Physics, vol. 126, 1980 , p. 205-241). MR 82j:35142 | Zbl 0452.35121 · Zbl 0452.35121
[13] A. UNTERBERGER , Quantification de certains espaces hermitiens symétriques , Séminaire Goulaouic-Schwartz, 1979 - 1980 , exposé 16, École Polytechnique; également: A quantization of hermitian symmetric spaces , Prépublications mathématiques de l’Université de Reims, 1980 . Numdam | Zbl 0448.46053 · Zbl 0448.46053
[14] A. et J. UNTERBERGER , Le calcul pseudo-différentiel attaché au groupe des transformations du demi-plan de Poincaré , Journées E.D.P., Saint-Jean-de-Monts, juin 1982 , conférence n^\circ 13, Soc. Math. France, Univ. de Rennes, Nantes et al. Numdam | Zbl 0489.35085 · Zbl 0489.35085
[15] A. UNTERBERGER , L’opérateur de Laplace-Beltrami du demi-plan et les quantifications linéaire et projective de SL(2, \Bbb R) (à paraître). · Zbl 0592.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.