zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. (English) Zbl 1168.62086
Summary: Short-range forecasts of precipitation fields are needed in a wealth of agricultural, hydrological, ecological and other applications. Forecasts from numerical weather prediction models are often biased and do not provide uncertainty information. We present a postprocessing technique for such numerical forecasts that produces correlated probabilistic forecasts of precipitation accumulation at multiple sites simultaneously. The statistical model is a spatial version of a two-stage model that represents the distribution of precipitation by a mixture of a point mass at zero and a gamma density for the continuous distribution of precipitation accumulation. Spatial correlation is captured by assuming that two Gaussian processes drive precipitation occurrence and precipitation amount, respectively. The first process is latent and drives precipitation occurrence via a threshold. The second process explains the spatial correlation in precipitation accumulation. It is related to precipitation via a site-specific transformation function, so as to retain the marginal right-skewed distribution of precipitation while modeling spatial dependence. Both processes take into account the information contained in the numerical weather forecasts and are modeled as stationary isotropic spatial processes with an exponential correlation function. The two-stage spatial model was applied to 48-hour-ahead forecasts of daily precipitation accumulation over the Pacific Northwest in 2004. The predictive distributions from the two-stage spatial model were calibrated and sharp, and outperformed reference forecasts for spatially composite and areally averaged quantities.

MSC:
62M20Prediction; filtering (statistics)
62P12Applications of statistics to environmental and related topics
62M30Statistics of spatial processes
65C60Computational problems in statistics
86A32Geostatistics
WorldCat.org
Full Text: DOI
References:
[1] Anderson, J. L. (1996). A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate 9 1518-1530.
[2] Antolik, M. S. (2000). An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. J. Hydrology 239 306-337.
[3] Applequist, S., Gahrs, G. E., Pfeffer, R. L. and Niu, X.-F. (2002). Comparison of methodologies for probabilistic quantitative precipitation forecasting. Weather and Forecasting 17 783-799.
[4] Barancourt, C., Creutin, J. D. and Rivoirard, J. (1992). A method for delineating and estimating rainfall fields. Water Resources Research 28 1133-1144.
[5] Bardossy, A. and Plate, E. J. (1992). Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research 28 1247-1259.
[6] Bell, T. L. (1987). A space-time stochastic model of rainfall for satellite remote-sensing studies. J. Geophysical Research 93 9631-9643.
[7] Bermowitz, R. J. (1975). An application of model output statistics to forecasting quantitative precipitation. Monthly Weather Review 103 149-153.
[8] Berrocal, V. J. (2007). Probabilistic weather forecasting with spatial dependence. Ph.D. thesis, Univ. Washington.
[9] Berrocal, V. J., Raftery, A. E. and Gneiting, T. (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts. Monthly Weather Review 135 1386-1402.
[10] Bremnes, J. B. (2004). Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Monthly Weather Review 132 338-347.
[11] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review 78 1-3.
[12] Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist. Quarterly 2 73-82.
[13] Chib, S. (1992). Bayes inference in the Tobit censored regression model. J. Econometrics 51 79-99. · Zbl 0742.62033 · doi:10.1016/0304-4076(92)90030-U
[14] Chilès, J.-P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty . Wiley, New York. · Zbl 0922.62098
[15] De Oliveira, V. (2004). A simple model for spatial rainfall fields. Stochastic Environmental Research and Risk Assessment 18 131-140. · Zbl 1114.86003 · doi:10.1007/s00477-003-0146-4
[16] De Oliveira, V., Kedem, B. and Short, D. A. (1997). Bayesian prediction of transformed Gaussian random fields. J. Amer. Statist. Assoc. 92 1422-1433. · Zbl 0919.62020 · doi:10.2307/2965412
[17] Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk management. Internat. Economic Review 39 863-883.
[18] Dietrich, C. R. and Newsam, G. N. (1997). Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18 1088-1107. · Zbl 0890.65149 · doi:10.1137/S1064827592240555
[19] Eckel, F. A. and Mass, C. F. (2005). Aspects of effective mesoscale, short-range ensemble forecasting. Weather and Forecasting 20 328-350.
[20] Foufoula-Georgiou, E. and Lettenmaier, D. P. (1987). A Markov renewal model for rainfall occurrences. Water Resources Research 23 875-884.
[21] Friederichs, P. and Hense, A. (2007). Statistical downscaling of extreme precipitation events using censored quantile regression. Monthly Weather Review 135 2365-2378.
[22] Gahrs, G. E., Applequist, S., Pfeffer, R. L. and Niu, X.-F. (2003). Improved results for probabilistic quantitative precipitation forecasting. Weather and Forecasting 18 879-890.
[23] Gel, Y., Raftery, A. E. and Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: the Geostatistical Output Perturbation (GOP) method (with discussion). J. Amer. Statist. Assoc. 99 575-588. · Zbl 1117.62341 · doi:10.1198/016214504000000872 · http://masetto.asa.catchword.org/vl=1887686/cl=20/nw=1/rpsv/cw/asa/01621459/v99n467/s1/p575
[24] Glahn, H. R. and Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorology 11 1203-1211.
[25] Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. Roy. Statist. Soc. Ser. B 69 243-268. · Zbl 1120.62074 · doi:10.1111/j.1467-9868.2007.00587.x
[26] Gneiting, T. and Raftery, A. E. (2005). Weather forecasting using ensemble methods. Science 310 248-249.
[27] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[28] Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L. and Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). Test 17 211-264. · Zbl 1196.62091 · doi:10.1007/s11749-008-0114-x
[29] Gneiting, T., Ševčíková, H., Percival, D. B., Schlather, M. and Jiang, Y. (2006). Fast and exact simulation of large Gaussian lattice systems in \Bbb R 2 : Exploring the limits. J. Comput. Graph. Statist. 15 483-501. · doi:10.1198/106186006X128551
[30] Grell, G. A., Dudhia, J. and Stauffer, D. R. (1995). A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Technical Note NCAR/TN-398 + STR.
[31] Grimit, E. P. and Mass, C. F. (2002). Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Weather and Forecasting 17 192-205.
[32] Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics XLIX: On the Matérn correlation family. Biometrika 93 989-995. · doi:10.1093/biomet/93.4.989
[33] Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review 129 550-560.
[34] Hamill, T. M. and Colucci, S. J. (1997). Verification of Eta-RSM short-range ensemble forecasts. Monthly Weather Review 125 1312-1327.
[35] Hamill, T. M. and Colucci, S. J. (1998). Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts. Monthly Weather Review 126 711-724.
[36] Hamill, T. M., Whitaker, J. S. and Wei, X. (2004). Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Monthly Weather Review 132 1434-1447.
[37] Herr, H. D. and Krzysztofowicz, R. (2005). Generic probability distribution of rainfall in space: The bivariate model. J. Hydrology 306 234-263.
[38] Hutchinson, M. F. (1995). Stochastic space-time weather models from ground-based data. Agricultural and Forest Meteorology 73 237-264.
[39] Kim, H.-M. and Mallick, B. K. (2004). A Bayesian prediction using the skew Gaussian distribution. J. Statist. Plann. Inference 120 85-101. · Zbl 1038.62027 · doi:10.1016/S0378-3758(02)00501-3
[40] Koizumi, K. (1999). An objective method to modify numerical model forecasts with newly given weather data using an artificial neural network. Weather and Forecasting 14 109-118.
[41] Krzysztofowicz, R. and Maranzano, C. J. (2006). Bayesian processor of output for probabilistic quantitative precipitation forecasts. Working paper, Dept. Systems Engineering and Department of Statistics, Univ. Virginia.
[42] Matheson, J. E. and Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Management Sci. 22 1087-1096. · Zbl 0349.62080 · doi:10.1287/mnsc.22.10.1087
[43] National Research Council (2006). Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts . The National Academies Press.
[44] Palmer, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Quarterly J. Roy. Meteorological Society 128 747-774.
[45] Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133 1155-1174.
[46] Ramirez, M. C., de Campos Velho, H. F. and Ferreira, N. J. (2005). Artificial neural network technique for rainfall forecasting applied to the São Paulo region. J. Hydrology 301 146-162.
[47] Rodriguez-Yam, G., Davis, R. A. and Scharf, L. L. (2004). Efficient Gibbs sampling of truncated multivariate normal with application to constrained linear regression. Working paper, Colorado State Univ., Fort Collins.
[48] Sansò, B. and Guenni, L. (1999). Venezuelan rainfall data analysed by using a Bayesian space-time model. Appl. Statist. 48 345-362. · Zbl 0939.62124 · doi:10.1111/1467-9876.00157
[49] Sansò, B. and Guenni, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist. Assoc. 95 1089-1100. · Zbl 1018.62103 · doi:10.2307/2669745
[50] Sansò, B. and Guenni, L. (2004). A Bayesian approach to compare observed rainfall data to deterministic simulations. Environmetrics 15 597-612.
[51] Schlather, M. (2001). Simulation and analysis of random fields. R News 1 18-20.
[52] Seo, D.-J., Perica, S., Welles, E. and Schaake, J. C. (2000). Simulation of precipitation fields from probabilistic quantitative precipitation forecast. J. Hydrology 239 203-229.
[53] Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C. (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review 135 3209-3220.
[54] Smith, L. A. and Hansen, J. A. (2004). Extending the limits of ensemble forecast verification with the minimum spanning tree. Monthly Weather Review 132 1522-1528.
[55] Stein, M. L. (1999). Interpolation of Spatial Data. Some Theory for Kriging . Springer, New York. · Zbl 0924.62100
[56] Stensrud, D. J. and Yussouf, N. (2007). Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system. Weather and Forecasting 22 2-17.
[57] Stern, R. D. and Coe, R. (1984). A model fitting analysis of rainfall data. J. Roy. Statist. Soc. Ser. A 147 1-34.
[58] Stidd, C. K. (1973). Estimating the precipitation climate. Water Resources Research 9 1235-1241.
[59] Talagrand, O., Vautard, R. and Strauss, B. (1997). Evaluation of probabilistic prediction systems. In Proceedings of ECMWF Workshop on Predictability 1-25. Reading, UK.
[60] Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26 24-36. · Zbl 0088.36607 · doi:10.2307/1907382
[61] Todorovic, P. and Woolhiser, D. A. (1975). A stochastic model of n -day precipitation. J. Appl. Meteorology 14 17-24.
[62] Wilks, D. S. (1989). Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resources Research 25 1429-1439.
[63] Wilks, D. S. (1990). Maximum likelihood estimation for the gamma distribution using data containing zeros. J. Climate 3 1495-1501.
[64] Wilks, D. S. (2004). The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts. Monthly Weather Review 132 1329-1340.
[65] Wilson, L. J., Burrows, W. R. and Lanzinger, A. (1999). A strategy for verifying weather element forecasts from an ensemble prediction system. Monthly Weather Review 127 956-970.
[66] Wood, A. T. A. and Chan, G. (1994). Simulation of stationary Gaussian processes in [0, 1] d . J. Comput. Graph. Statist. 3 409-432.
[67] Woolhiser, D. A. and Pegram, G. G. S. (1979). Maximum likelihood estimation of Fourier coefficients to describe seasonal variations of parameters in stochastic daily precipitation models. J. Appl. Meteorology 18 34-42.
[68] Yussouf, N. and Stensrud, D. J. (2006). Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system. Monthly Weather Review 134 3415-3424.