×

Small values of the quadratic part of the Néron-Tate height on an Abelian variety. (English) Zbl 0551.14015

Let A be an abelian variety of dimension g, defined over the field \({\bar {\mathbb{Q}}}\) of algebraic numbers and embedded in projective space \({\mathbb{P}}_ N\). It is proved in this paper that there exist constants \(\kappa\),\(\lambda\) depending only on g, and a constant C depending only on A and the embedding, with the following properties. Let A(\({\bar {\mathbb{Q}}})\) denote the group of points on A defined over \({\bar {\mathbb{Q}}}\). For P in A(\({\bar {\mathbb{Q}}})\) write q(P) for the quadratic part of the associated (absolute) Néron-Tate height, and let \(D=D(P)\) be the degree of the smallest field of definition of P. Then if \(q(P)<C^{-1}D^{- \kappa}\) the point P is necessarily a torsion point (and so in fact \(q(P)=0)\); and furthermore its order is at most \(CD^{\lambda}\). This generalizes an earlier result of M. Anderson and the author [Math. Z. 174, 23-34 (1980; Zbl 0421.14006)] for elliptic curves. The proof involves methods from the theory of transcendental numbers.

MSC:

14K15 Arithmetic ground fields for abelian varieties
11J81 Transcendence (general theory)
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] M. Anderson and D.W. Masser : Lower bounds for heights on elliptic curves . Math. Zeit. 174 (1980) 23-34. · Zbl 0421.14006
[2] A.O. Gelfond : Transcendental and algebraic numbers . New York: Dover (1960). · Zbl 0090.26103
[3] E.R. Kolchin : Algebraic groups and algebraic dependence . Amer. J. Math. 90 (1968) 1151-1164. · Zbl 0169.36701
[4] S. Lang : Les formes bilinéaires de Néron et Tate . Sém. Bourbaki, 16e année (1963/4), No. 274. · Zbl 0138.42101
[5] M. Laurent : Minoration de la hauteur de Néron-Tate, Thèse d’Etat , Université de Paris VI (1982).
[6] D.W. Masser : Division fields of elliptic functions , Bull. London Math. Soc. 9 (1977) 49-53. · Zbl 0356.12018
[7] D.W. Masser : Small values of the quadratic part of the Néron-Tate height , Progress in Math . Vol. 12. Boston, Basel, Stuttgart: Birkhäuser (1981) pp. 213-222. · Zbl 0455.14024
[8] D.W. Masser and G. Wüstholz : Fields of large transcendence degree generated by values of elliptic functions . Invent Math. 72 (1983) 407-464. · Zbl 0516.10027
[9] P. Philippon : Indépendance algébrique de valeurs de fonctions exponentielles p-adiques . J. reine angew. Math. 329 (1981) 42-51. · Zbl 0459.10024
[10] A. Schinzel and H. Zassenhaus : A refinement of two theorems of Kronecker . Michigan Math. J. 12 (1965) 81-85. · Zbl 0128.03402
[11] J.-P. Serre : Propriétés galoisiennes des points d’ordre fini des courbes elliptiques . Invent. Math. 15 (1972) 259-331. · Zbl 0235.14012
[12] J.-P. Serre : Quelques applications du théorème de densité de Chebotarev . Publ. Math. I.H.E.S. 54 (1981) 323-401. · Zbl 0496.12011
[13] C.L. Stewart : Algebraic integers whose conjugates lie near the unit circle . Bull. Soc. Math. France 106 (1978) 169-176. · Zbl 0396.12002
[14] M. Waldschmidt : Nombres transcendants et groupes algébriques . Astérisque 69-70 (1979). · Zbl 0428.10017
[15] D.W. Masser and G. Wüstholz : Zero estimates on group varieties I . Invent. Math. 64 (1981) 489-516. · Zbl 0467.10025
[16] F.A. Bogomolov : Sur l’algébricité des représentations l-adiques . C.R. Acad. Sci. Paris 290A (1980) 701-703. · Zbl 0457.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.