×

zbMATH — the first resource for mathematics

Générateurs de l’algèbre \({\mathcal U}(G)^ K\) avec \(G=SO(m)\) ou \(SO_ 0(1,m-1)\) et \(K=SO(m-1)\). (French) Zbl 0551.22007
Let \(G=SO(m)\) or \(SO_ 0(l,m-1)\), \(K=SO(m-1)\) and let \({\mathcal U}(G)^ K\) be the real algebra of differential operators on G, left invariant by G and right invariant by K. The author shows that \({\mathcal U}(G)^ K\) is generated by the centers of \({\mathcal U}(G)\) and \({\mathcal U}(K)\) where \({\mathcal U}(G)\) (resp. \({\mathcal U}(K))\) is the real algebra of differential operators on G (resp. on K) invariant by left translations of G (resp. of K). In particular \({\mathcal U}(G)^ K\) is commutative. The proof makes heavy use of the isomorphism between \({\mathcal U}(G)^ K\) and the algebra of polynomial functions on the Lie algebra of G, invariant under the adjoint representation of K. \(\{\) A short version of this paper has been published in Publ. Dép. Math., Nouv. Sér., Univ. Claude Bernard, Lyon 41B, Exp. No.3, 2 p. (1982; Zbl 0516.22012)\(\}\).
Reviewer: W.Miller jr

MSC:
22E60 Lie algebras of Lie groups
17B35 Universal enveloping (super)algebras
Citations:
Zbl 0516.22012
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J. DIXMIER . - Algèbres enveloppantes . Gauthier-Villars, 1974 . MR 58 #16803a | Zbl 0308.17007 · Zbl 0308.17007
[2] J. DIXMIER . - Sur les représentations de certains groupes orthogonaux , C.R.A.S., 250, série A, ( 1960 ), p. 3263-3265. MR 22 #5901 | Zbl 0093.03501 · Zbl 0093.03501
[3] K. MINEMURA . - Invariant differential operators and spherical sections of a homogeneous vector bundle . Preprint, ( 1978 ). · Zbl 0791.22007
[4] S. KOBAYASHI . - K. NOMIZU , Foundations of differentiel geometry . Volume II, Interscience publischers, 1969 . Zbl 0175.48504 · Zbl 0175.48504
[5] H. WEYL . - The classical groups . Princeton mathematical series, 1973 . · JFM 65.0058.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.