Une remarque sur l’approximation de l’integrale stochastique du type noncausal par une suite des integrales de Stieltjes. (French) Zbl 0551.60058

If \(f(t,\omega)\), (t\(\in [0,1]\), \(\omega\in \Omega ({\mathcal F},P))\), is a measurable process with \(P\{\int^{1}_{0}f^ 2(t,\omega)dt<\infty \}=1\), \(B(t,\omega)\) is a Brownian motion and \(\{\phi_ n\}\) is an orthonormal basis of \(L^ 2([0,1])\), then the series \(\sum <f,\phi_ n><\phi_ n,\dot B>\) with convergence in probability is used to define a stochastic integral \(\int^{1}_{0}f(t,\omega)d^*B(t,\omega)\). While this definition avoids the customary nonanticipatory condition, it may depend on the choice of the base. The author addresses to this difficulty and proves the following result: If the above process f is integrable in the \(L^ 1(\Omega)\) sense w.r.t. a trigonometric system in \(L^ 2[0,1]\), then it is also integrable w.r.t. the Haar system, and the two integrals are equal.
Reviewer: D.Kannan


60H05 Stochastic integrals
Full Text: DOI


[1] S. OGAWA, Sur le produit direct du bruit blanc par luimeme. C. R. Acad. Sc. Paris, 288 (1979), Serie A, 359-362. · Zbl 0397.60047
[2] S. OGAWA, Quelques proprietes de integrate stochastique du type noncausal. (1981, a paraitre).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.