On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional elasticity. (English) Zbl 0551.73019

The authors examine the title problem. They present sufficient conditions for convergence. The proof is based upon the discovery that the incremental method is simply Euler’s method for approximating a differential equation in Sobolev space.
The paper is carefully written using the notation of modern elasticity. It may prove to be a foundational paper for future studies on convergence of incremental methods. It should therefore be of interest and use to workers in theoretical elasticity as well as to those using finite element approximations.
Reviewer: R.L.Huston


74B20 Nonlinear elasticity
Full Text: DOI


[1] Adams, R.A., Sobolev Spaces, Academic Press, New York (1975).
[2] Anselone, P.M. and Moore, An extension of the Newton-Kantorovic method for solving nonlinear equations with an application to elasticity, J. Math. Anal. Appl. 13 (1966) 476-501. · Zbl 0144.15802
[3] Argyris, J.H. and Kleiber, M., Incremental formulation in nonlinear mechanics and large strain elasto-plasticity; Natural approach, Part I, Comput. Methods Appl. Mech. Engrg. 11 (1977) 215-248. · Zbl 0384.73053
[4] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. · Zbl 0368.73040
[5] Bernadou, M., Ciarlet, P.G. and Hu, J., Sur la convergence des m?thodes incr?mentales en ?lasticit? non lin?aire tridimensionnelle, C.R. Acad. Sci. Paris, S?r. I 295 (1982) 639-641.
[6] Bernadou, M., Ciarlet, P.G. and Hu, J., On the convergence of incremental methods in finite elasticity, in Proceedings of the Chinese-French Conference on Finite Element Methods (Feng Kang and J.L. Lions, editors), pp. 113-128, Science-Press, Beijing (1983). · Zbl 0609.73046
[7] Cescotto, S., Frey, F. and Fonder, G., Total and updated Lagrangian descriptions in nonlinear structural analysis: a unified approach, in Energy Methods in Finite Element Analysis (R. Glowinski, E.Y. Rodin and O.C. Zienkiewicz, eds.), John Wiley, New York (1979) pp. 283-296. · Zbl 0435.73011
[8] Ciarlet, P.G., Quelques remarques sur les probl?mes d’existence en ?lasticit? non lin?aire, in Computing Methods in Applied Sciences and Engineering, V (R. Glowinski and J.L. Lions, eds.), North-Holland, Amsterdam (1982) pp. 235-254.
[9] Ciarlet, P.G., Topics in Mathematical Elasticity, North Holland, Amsterdam (1985).
[10] Ciarlet, P.G. and Destuynder, P., A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258. · Zbl 0405.73050
[11] Ciarlet, P.G. and Geymonat, G., Sur les lois de comportement en ?lasticit? non lin?aire compressible, C.R. Acad. Sci. Paris S?r. II 295 (1982) 423-426. · Zbl 0497.73017
[12] Crouzeix, M. and Mignot, A., Analyse Num?rique des Equations Diff?rentielles, Masson, Paris (1984). · Zbl 0635.65079
[13] Destuynder, P. and Galbe, G., Analyticit? de la solution d’un probl?me hyper?lastique non lin?aire, C.R. Acad. Sci. Paris S?r. A, 365-368 (1978). · Zbl 0403.73055
[14] Geymonat, G., Sui problemi ai limiti per i sistemi lineari ellitici, Ann. Mat. Pura Appl. 69 (1965) 207-284. · Zbl 0152.11102
[15] Gurtin, M.E., Topics in Finite Elasticity, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1981). · Zbl 0496.73036
[16] Le Dret, H., Quelques Probl?mes d’Existence en Elasticit? Non Lin?aire, Thesis, Universit? Pierre et Marie Curie, Paris (1982).
[17] Marsden, J.E. and Hughes, T.J.R., Topics in the mathematical foundations of elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 2, Pitman, London (1978) pp. 30-285.
[18] Marsden, J.E. and Hughes, T.J.R., Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs (1983). · Zbl 0545.73031
[19] Mason, J., Variational, Incremental and Energy Methods in Solid Mechanics and Shell Theory, Elsevier, Amsterdam (1980). · Zbl 0571.73008
[20] Ne?as, J., Les M?thodes Directes en Th?orie des Equations Elliptiques, Masson, Paris (1967).
[21] Oden, J.T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1972). · Zbl 0235.73038
[22] Pian, T.H.H., Variational principles for incremental finite element methods, Journal of the Franklin Institute 302 (1976) 473-488. · Zbl 0356.73060
[23] Rheinboldt, W.C., Methods for Solving Systems of Nonlinear Equations, CBMS Series 14, SIAM, Philadelphia (1974). · Zbl 0325.65022
[24] Rheinboldt, W.C., Numerical analysis of continuation methods for nonlinear structural problems, Computers & Structures 13 (1981) 103-113. · Zbl 0465.65030
[25] Stoppelli, F., Un teorema di esistenza e di unicit? relativo alle equazioni dell’elastostatica isoterma per deformazioni finite. Ricerche di Matematica 3 (1954) 247-267. · Zbl 0058.39701
[26] Truesdell, C. and Noll, W., The non-linear field theories of mechanics, Handbuch der Physik, Vol. III/3, 1-602 (1965). · Zbl 1068.74002
[27] Valent, T., Teoremi di esistenza e unicit? in elastostatica finita, Rend. Sem. Mat. Univ. Padova 60 (1979) 165-181. · Zbl 0425.73011
[28] Van Buren, M., On the Existence and Uniqueness of Solutions to Boundary Value Problems in Finite Elasticity, Thesis, Carnegie-Mellon University (1968).
[29] Wang, C.-C. and Truesdell, C., Introduction to Rational Elasticity, Noordhoff, Groningen (1973). · Zbl 0308.73001
[30] Washizu, K., Variational Methods in Elasticity and Plasticity, Second Edition, Pergamon, Oxford (1975). · Zbl 0339.73035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.