zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the theory of the Bernoulli polynomials and numbers. (English) Zbl 0552.10007
This is an excellent paper containing several new representations of the Bernoulli polynomials and the Bernoulli numbers. In the sequel, let n be any nonnegative integer unless otherwise specified, and let S(n,k) be the Stirling numbers of the second kind. It is well known that the Bernoulli numbers $B\sb n$, generated by the Taylor expansion $g(t)=t/(e\sp t- 1)=\sum\sp{\infty}\sb{n=0}B\sb nt\sp n/n!\quad (\vert t\vert <2\pi),$ are represented by the classical formula $B\sb n=\sum\sp{n}\sb{k=0}(-1)\sp k k! S(n,k)/(k+1).$ The author first obtains an explicit formula for the nth derivative of g(t). Namely, $g\sp{(n)}(t)=\sum\sp{n}\sb{k=0}(-1)\sp k k! S(n,k) G\sb k(t)$ in the finite t-plane punctured at the points 2m$\pi$ i, $m=\pm 1,\pm 2,...$, where the functions $G\sb k(t)$ are regular for the considered t and have the representation $$ G\sb 0(t)=g(t),\quad G\sb k(t)=e\sp{-t}/(1-e\sp{-t})\sp{k+1}[t- \sum\sp{k}\sb{\nu =1}(1-e\sp{-t})\sp{\nu}/\nu]\quad (1\le k\le n;\quad n\ge 1). $$ He then obtains the nth derivative of the generating function $g(t,x)=te\sp{tx}/(e\sp t-1)=\sum\sp{\infty}\sb{n=0}B\sb n(x)t\sp n/n!\quad (\vert t\vert <2\pi)$ of the Bernoulli polynomials $B\sb n(x)=\sum\sp{n}\sb{\nu =0}\left( \matrix n\\ \nu \endmatrix \right)B\sb{\nu}x\sp{n-\nu}.$ Namely, $\partial\sp ng(t,x)/\partial t\sp n=e\sp{tx}\sum\sp{n}\sb{k=0}(-1)\sp k \Delta\sp kx\sp n G\sb k(t)$ in the finite t-plane punctured at the points 2m$\pi$ i, $m=\pm 1,\pm 2,...$, where $\Delta\sp kx\sp n$ is the finite difference of the kth order of $x\sp n$. In particular, for $t=0$, he finds the new formula $B\sb n(x)=\sum\sp{n}\sb{k=0}(-1)\sp k \Delta\sp kx\sp n/(k+1),$ which generalizes the classical representation of $B\sb n$ given above. He also derives a generalization of the Kronecker-Bergmann formula for $B\sb n$ to $B\sb n(x).$ The author then proceeds to introduce the class of rational functions $T\sb n(z)=\sum\sp{\infty}\sb{k=0}(-1)\sp kS(n,k)/(z+k)$ and to establish an analytic expression of $T\sb n(z)$ by means of any of the functions $T\sb{n-\nu}$ $(\nu =0,1,...,n)$. As a corollary, he derives a series of new representations of the Bernoulli numbers $B\sb n=T\sb n(1)$. Among other results, he also obtains a representation of $T\sb n(z)$ as a quotient of two relatively prime polynomials.
Reviewer: A.N.Philippou

11B39Fibonacci and Lucas numbers, etc.
05A15Exact enumeration problems, generating functions
05A19Combinatorial identities, bijective combinatorics
Full Text: DOI
[1] Gould, H.: Explicit formulas for Bernoulli numbers. Amer. math. Monthly 79, 44-51 (1972) · Zbl 0227.10010
[2] Comtet, L.: Advanced combinatorics (The art of finite and infinite expansions). (1974) · Zbl 0283.05001
[3] Todorov, P. G.: New explicit formulas for the nth derivative of composite functions. Pacific J. Math. 92, No. No. 1, 217-236 (1981) · Zbl 0459.30014
[4] Jordan, Ch: Calculus of finite differences. (1965) · Zbl 0154.33901
[5] Kronecker, L.: Bemerkung zur abhandlung des herrn worpitzky. J. reine angew. Math. 94, 268-270 (1883) · Zbl 15.0201.02
[6] Bergmann, H.: Eine explizite darstellung der bernoullischen zahlen. Math. nachr. 34, 377-378 (1967) · Zbl 0307.10018