zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evolutionary dynamics in frequency-dependent two-phenotype models. (English) Zbl 0552.92011
General frequency-dependent selection schemes based on two phenotypes segregating in large diploid populations are analyzed, by assuming nonoverlapping discrete generations with random mating. With linear phenotypic fitnesses independent of sex and parental type, a global dynamical analysis is provided. In the nonlinear case it is shown that a stability analysis is possible in the vicinity of every equilibrium. The exact conditions and domains of attraction are examined. Application is made to two-sex two-phenotypic haploid models.
Reviewer: Y.Komatu

92D25Population dynamics (general)
92D15Problems related to evolution
Full Text: DOI
[1] Axelrod, R.; Hamilton, W. D.: The evolution of cooperation. Science 211, 1390-1396 (1981) · Zbl 1225.92037
[2] Bishop, D. T.; Cannings, C.: Models of animal conflict. Advan. appl. Prob 8, 616-621 (1976) · Zbl 0382.92006
[3] Boorman, S. A.; Levitt, P. R.: A frequency-dependent natural selection model for the evolution of social cooperation networks. Proc. nat. Acad. sci. USA 70, 187-189 (1973) · Zbl 0278.92005
[4] Boorman, S. A.; Levitt, P. R.: The genetics of altruism. (1980) · Zbl 0588.92012
[5] Clarke, B.: Density-dependent selection. Amer. natur 106, 1-13 (1972)
[6] Clarke, B. C.; O’donald, P.: Frequency-dependent selection. Heredity 19, 201-206 (1964)
[7] Cockerham, C. C.; Burrows, P. M.: Populations of interacting autogenous components. Amer. natur 105, 13-29 (1971)
[8] Cockerham, C. C.; Burrows, P. M.; Young, S. S.; Prout, T.: Frequency-dependent selection in randomly mating populations. Amer. natur 106, 493-515 (1972)
[9] Cohen, D.; Eshel, I.: On the founder effect and the evolution of altruistic traits. Theor. pop. Biol 10, 276-302 (1976) · Zbl 0366.92021
[10] Eshel, I.: Evolutionary stable strategies and viability selection in mendelian populations. Theor. pop. Biol 22, 204-217 (1982) · Zbl 0504.92021
[11] Eshel, I.; Cavalli-Sforza, L. L.: Assortment of encounters and evolution of cooperativeness. Proc. nat. Acad. sci. USA 79, 1331-1335 (1982) · Zbl 0491.92024
[12] Eshel, I.; Feldman, M. W.: On evolutionary genetic stability of the sex ratio. Theor. pop. Biol 21, 430-439 (1982) · Zbl 0491.92012
[13] Ewens, W. J.: With additive fitnesses, the mean fitness increases. Nature (London) 221, 1076 (1969)
[14] Fisher, R. A.: The genetical theory of natural selection. (1958) · Zbl 56.1106.13
[15] Gregorius, H. R.: Selection in diplo-haplonts. Theor. pop. Biol 21, 289-300 (1982) · Zbl 0478.92009
[16] Haigh, J.: Game theory and evolution. Advan. appl. Prob 7, 8-11 (1975) · Zbl 0304.92013
[17] Hines, W. G. S.: Strategy stability in complex populations. J. appl. Prob 17, 600-610 (1980) · Zbl 0466.92015
[18] Hines, W. G. S.: Three characterizations of population strategy stability. J. appl. Prob 17, 333-340 (1980) · Zbl 0439.92021
[19] Hines, W. G. S.: Strategy stability in complex randomly mating diploid populations. J. appl. Prob 19, 653-659 (1982) · Zbl 0495.92011
[20] Hofbauer, J.; Schuster, P.; Sigmund, K.: A note on evolutionary stable strategies and game dynamics. J. theor. Biol 81, 613-616 (1979)
[21] Karlin, S.: Theoretical aspects of multilocus selection balance I. MAA studies in mathematics 16, 503-587 (1978)
[22] Karlin, S.; Lessard, S.: On the optimal sex ratio. Proc. nat. Acad. sci. USA 80, 5931-5935 (1983) · Zbl 0521.92013
[23] Karlin, S.; Matessi, C.: Kin selection and altruism. Proc. roy. Soc. London ser. B (1983) · Zbl 0555.92012
[24] Kingman, J. F. C.: A matrix inequality. Quart. J. Math 12, 78-80 (1961) · Zbl 0099.24802
[25] Kingman, J. F. C.: A mathematical problem in population genetics. Proc. Cambridge phil. Soc 57, 574-582 (1961) · Zbl 0104.38202
[26] Levins, R.: Changing environments. (1968)
[27] Lewontin, R. C.: A general method for investigating the equilibrium of gene frequency in a population. Genetics 43, 419-434 (1958)
[28] Lloyd, D. G.: Genetic and phenotypic models of natural selection. J. theor. Biol 69, 543-560 (1977)
[29] Lyubich, Yu.I.; Maistrovskii, G. D.; Ol’khovskii, Yu.G.: Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems inform. Transmission 16, 66-75 (1980)
[30] Macarthur, R.: Species packing and competitive equilibrium for many species. Theor. pop. Biol 1, 1-11 (1970)
[31] Matessi, C.; Jayakar, S. D.: Models of density-frequency dependent selection for the exploitation of resources. I. intraspecific competition. Population genetics and ecology, 707-721 (1976)
[32] Matessi, C.; Jayakar, S. D.: Conditions for the evolution of altruism under Darwinian selection. Theor. pop. Biol 9, 360-387 (1976) · Zbl 0337.92009
[33] Smith, J. Maynard: The theory of games and the evolution of animal conflicts. J. theor. Biol 74, 209-221 (1974)
[34] Smith, J. Maynard: Will sexual population evolve to an ESS?. Amer. natur 117, 1015-1018 (1981)
[35] Smith, J. Maynard: Evolution and the theory of games. (1982) · Zbl 0526.90102
[36] Smith, J. Maynard; Price, G. R.: The logic of animal conflicts. Nature (London) 246, 15-18 (1973)
[37] Nagylaki, T.: Selection in one- and two-locus systems. Lecture notes in biomathematics 15 (1977) · Zbl 0354.92019
[38] O’donald, P.: A general analysis of genetic models with frequency-dependent mating. Heredity 44, 309-320 (1980)
[39] Roughgarden, J.: Evolution of niche width. Amer. natur 106, 683-718 (1972)
[40] Schuster, P.; Sigmund, K.: Coyness, philandering and stable strategies. Anim. behav 29, 186-192 (1981)
[41] Schutz, W. M.; Brim, C. A.; Usanis, S. A.: Inter-genotypic competition in plant populations. I. feedback systems with stable equilibria in populations of autogamous homozygous line. Crop. sci 8, 61-66 (1968)
[42] Schutz, W. M.; Usanis, S. A.: Inter-genotypic competition in plant populations. II. maintenance of allelic polymorphisms with frequency-dependent selection and mixed selfing and random mating. Genetics 61, 875-891 (1969)
[43] Slatkin, M.: On the equilibrium of fitnesses by natural selection. Amer. natur 112, 845-859 (1978)
[44] Slatkin, M.: The evolutionary response to frequency- and density-dependent interactions. Amer. natur 114, 384-398 (1979)
[45] Taylor, P. D.: Evolutionary stable strategies with two types of player. J. appl. Prob 16, 76-83 (1979) · Zbl 0398.90120
[46] Taylor, P. D.; Jonker, L. B.: Evolutionarily stable strategies and game dynamics. Math. biosci 40, 145-156 (1978) · Zbl 0395.90118
[47] Uyenoyama, M. K.; Feldman, M. W.; Mueller, L. D.: Population genetic theory of kin selection. I. multiple alleles at one locus. Proc. nat. Acad. sci. USA 78, 5036-5040 (1981) · Zbl 0492.92013
[48] Wright, S.: Classification of the factors of evolution. Cold spring harbor symp. Quant. biol 20, 16-24 (1955)
[49] Zeeman, E. C.: Population dynamics from game theory. Lecture notes in mathematics 819, 471-497 (1980)
[50] Zeeman, E. C.: Dynamics of the evolution of animal conflicts. J. theor. Biol 89, 249-270 (1981)